
Digital Braille Watch 

 

 

 

 

 

 

Client: Colton and Holly Albrecht 
 

Advisor: Professor Walter Block 
 

Team members: 
Team leader – Joel Gaston 

BSAC – Ryan Kimmel 
BWIG – Robert Bjerregaard 

Communications – Allison McArton 
 
 

Date: December 11, 2008 



 1 

Table of Contents 
 
Abstract……………………………………………………………………………….…   2 

Problem Statement…………………………………………………………….…………  2 

Background 

Problem Motivation………………………....………………..………………. ...  3 

 Braille………………………………………………………...…………………   3 

 Competing Products……………………………………………………………..  4 

Design Constraints……………………………………………………………….  5 

Previous Prototype……………………………………………………………..    6 

Redesign: Isolating Vibration …………………………………………………………. ...7 

Final Design 

 Circuitry ………………………………………………………………………... 10 

Programming …………………………………………………………………..   14 

Testing …………………………………………………………………………………   19 

Future Work.…………………………………………………………………...………   20 

Appendices 

A: Product Design Specifications     ……………………………………...…..    22 

B: References…………………………………………………………………..   25 

C: Code ………………………………………………………………………..  .26 



 2 

Abstract 
Currently the only portable devices that allow for the visually impaired to tell time are 

audible watches that “speak” the time and an analog watches that have different dots at the 3, 6, 

9, and 12 positions in which the individual uses touch discrimination to determine the time.  

While these methods work, audible watches can be disruptive and tactile analog watches can 

easily be misread. Digital Braille clocks that exhibit Braille numerals do exist, yet these are not 

portable and are meant to stay at a stationary location. Last semester, a Biomedical Engineering 

design team undertook a project to create a digital Braille watch for a blind client. Utilizing four 

vibro-motors, the team created a device that displayed the time in Braille using a computer and a 

personal measurement device. The goal for this project is to improve upon a digital Braille 

design and compact it into a small, portable system that can be read with minimal error. The 

device prototype now accurately displays the Braille representation of time through vibro-

motors, and is completely contained in a compact design. An ATtiny24 AVR microcontroller 

controls the vibration motor output through the use of a custom program and circuit board. The 

vibration-motors themselves are mounted on viscoelastic foam at a distance of 3 cm apart, 

allowing for full two-point discrimination. Future work for this project includes improving the 

watch enclosure for everyday use, as well as additional functionality for displaying the date. 

 

Problem Statement 

 The visually impaired currently rely on watches that audibly announce the time or tactile 

analog watches that must be carefully examined to tell time.  These options can be disruptive, 

fragile, or prone or misreading.  Our goal is to create a digital Braille watch that employs 24-

hour notation to tell time, does not cause disruptions, and is robust enough to have a long service 



 3 

life.  The Braille display must be sized so that the user can accurately and reliably distinguish the 

different digits displayed. 

 

Background 

Problem Motivation 

Colton Albrecht, who is visually impaired, currently has a watch that audibly announces 

the time.  Since he is in school, he has noticed that his watch can be a distraction to the class.  

Thus, Colton has requested a watch that is not audible and that he can use without any outside 

assistance.  With this device, Colton can gain the independence he wants while at school and 

around the house.  This device would benefit all children who are visually impaired that have 

trouble with reading analog Braille watches. 

Braille 

As the client is visually impaired, he is very practiced at reading the Braille alphabet.   

Ideally the design will display the time using Braille representations of the digits zero through 

nine.  A shown by figure 1, Braille numbers only use the top four units of a Braille cell, as 

opposed to the traditional six units.  

 

 

 

 

 

Figure 1:  The Braille representation of 
digits zero through nine 
http://www.pharmabraille.co.uk/images/braille-
alphabet/braille-alphabet-numbers.gif 



 4 

Competing/current products 

There are a number of ways in which a visually impaired individual can determine the 

current time.  The four most common methods include asking another person, reading analog 

Braille watches, audible watches, and digital Braille clocks.  Though each of these methods 

allows the individual to ascertain the time, all have serious drawbacks. 

 If a visually impaired person needs to know the time, but does not own a device to aid in 

telling time, he or she can usually ask another person.  This method of telling time may be 

sufficient in a few cases, but has obvious shortcomings.  There are many instances during a 

normal day in which it would be both inconvenient and disruptive to inquire about the current 

time.  Therefore, this method alone is not commonly used as the only way to establish the current 

time. 

 Two popular devices that are already available 

on the commercial market are the analog Braille watch 

and the audible watch.  Analog Braille watches, shown 

in figure 2, are often chosen because of the relatively 

simple design and the relatively inexpensive cost.  The 

design’s major flaw becomes evident once the person 

tries to read the time, however.  These watches are easily 

misread, as one must be able to accurately orientate the 

two differently sized hands on the watch face that already contains an arrangement of bumps 

signifying the hour.   

The other popular device is the audible watch.  Most audible watches appear very similar 

to popular digital watches, but contain a button that activates an audio output of the current time.  

 

 Figure 2:  An Analog Braille Watch 
http://www.geocities.com/Eureka/Concourse/3294/cortblin
d.jpg 



 5 

The advantage of this design is that it is almost impossible to misread the time, because it is read 

aloud to the user.  The disadvantage is that the sound that enables the user to tell time can also be 

distracting to others, especially in a quiet setting. 

 The final method for a visually impaired person to tell time is to use a digital Braille 

clock.  The Kentucky Department for the Blind has already designed and built a “Braille Digital 

Clock Calendar” that displays the current time using six Braille cells – two for hours, two for 

minutes, and two for seconds.  This design has two advantages, but one major disadvantage.  The 

Braille Digital Clock Calendar is easy to read and is not distracting to others but is most 

definitely a clock, not a watch.  The product measures 7x5 inches, and is one 1.5 inches thick.  

This is definitely not watch size.  The parts for the device cost around $600, not including labor, 

a cost well out of our price range. 

 

Design Constraints 

The following requirements must be met throughout the design process: 

1. The watch display must utilize traditional Braille numbering. 

2. This must be able to fit on the wrist or in the pocket, so it must be small, and all of the 

components must be internalized. 

3. Military time must be used – hours are to be displayed based on from 0 to 24 throughout 

the day. 

4. The dots that are on the watch face must be positioned appropriately so the user can 

distinguish between them to be able to tell the time. 

5. The watch must be quiet – there must not be a system that the watch announces the time, 

and all components must not make disruptive noise. 



 6 

6. SAFE – the watch must not cause any harm to the user. 

7. Aesthetics – The watch must be comfortable to the user. 

 

Previous Design 

 Last semester, a BME 301 design team started this project. They came up with several 

different designs but ultimately decided upon a vibro-motor design. By using four small motors 

(as shown in Figure 3), the team had the ability to create a Braille representation time by turning 

on and off the motors in accordance the number desired. For example, the Braille portrayal of the 

number one is a single dot in the upper left, so to display this 

number; the upper left motor would vibrate while the others 

remain off. 

 In order to keep track of time and convert this digital 

time into a Braille depiction, the previous team developed a 

program in the language Delphi 5, similar to Pascal (Tang et 

al., 2008). To depict the computer program output on the 

vibrating motors, the team used a personal measurement 

device (PMD). A PMD has the ability to take in either digital or analog signals and create output 

with varying voltages (2008). They were able to successfully output digits to the vibrating 

motors using military time as to not confuse AM and PM times. They used two digit outputs for 

the hour and two for the minutes. In order to distinguish the four numbers, the team also 

incorporated a one second pause between the different displays. The final output of 7:35am 

would produce zero, pause, seven pause, three, pause, five through the different vibrations. 

 

Figure 3:  A shaftless 
vibrating motor that draws 
small amounts of power in 
order to vibrate. 
http://www.sparkfun.com/commerce/pr
oduct_info.php?produ cts_id=8449 



 7 

Redesign: Isolating Vibration 

One of the main concerns with the design was the problem of isolating vibrations.  

During initial testing, it was found that isolating vibrations within one unit would be very 

difficult.  The vibro-motors that are incorporated into the final design are actually the same as the 

motors found in many cell phones.  One of these motors can cause an entire cell phone to vibrate.  

The goal for this design is to do the opposite of this – to have one motor vibrating, but isolate the 

vibrations so the rest of the watch, including the other three motors, is not disturbed.  After trying 

various materials and methods for isolating vibrations, it was found that the best accessible 

material was a type of viscoelastic foam.  The previous team had attempted to use this foam to 

isolate vibrations, but the problem with their design was that they had the motors too close to 

each other, so when one motor was activated, all four vibrated.  In the current design, the motors 

are spaced much farther apart, and the user’s wrist is actually used as a vibration dampener. 

 The first attempt at isolating vibrations 

was to embed two motors in two separate blocks 

of foam, so that each piece of foam contained 

only one motor.  As you can see in figure 4, these 

separate blocks were then glued onto a piece of 

wood.  When testing this design, it was found that 

vibrations from one motor would be transmitted 

down through the foam, through the wood, up into the 

other block of foam, and finally into the second motor.  This caused the second motor to vibrate 

equally as much as the first motor, even though it was not activated.  It was concluded that this 

Figure 4: First attempt at 
isolating vibrations. 



 8 

design would not work, and that new materials or new positioning of the motors would need to 

be used. 

 The second attempt involved two 

thick pieces of copper wire bent into the 

shape (Figure 5).  A shock absorber 

commonly seen on tennis racquets was 

incorporated into the design in an effort to 

dissipate vibrations.  The same problem occurred 

here.  Vibrations were transmitted from one motor to the next.  From here it was concluded that 

the design must not overly constrict the motion of the vibro-motors (embedding them in foam 

was not going to work), and also that a rigid structure, such as thick copper wire, would not work 

either.  For these reasons it was decided to mount the motors on the outside of a piece of foam, 

more specifically, on a softer piece of viscoelastic foam. 

 The vibro-motors are on the exterior of the 

final design (Figure 6) for a couple of reasons.  This 

makes accessing the motors hassle-free, but it also 

makes isolating the vibrations much easier.  If the 

motors were embedded in the foam, much more of the 

vibration energy would be transmitted into the foam, so 

dampening these vibrations would become much more difficult.  That is why it was decided that 

the motors be mounted on the outside of the viscoelastic foam.  

Figure 5: Second attempt at 
isolating vibrations. 

Figure 6: Final design. 



 9 

 Viscoelastic materials are both viscous and elastic when undergoing deformation.  When 

a purely elastic material undergoes deformation, any energy put into the material comes right 

back out.  In other words, no energy is dissipated.  Viscoelastic materials dissipate energy when 

a load is applied, so energy is lost.  Since energy cannot be created or destroyed, the energy has 

to go somewhere, and in the case of viscoelastic materials, the energy goes into molecular 

rearrangement within the material (Meyers and Chawla).  This property of viscoelastic foam is 

exactly what is needed to isolate vibrations. 

 Our design incorporates a block of viscoelastic foam to help dampen vibrations, but after 

some testing it was realized that the foam alone would not be enough to isolate the vibrations.  

The second way vibrations are isolated is by using the user’s wrist as a dampener.  When the 

viscoelastic foam is pressed against the user’s skin, much of the energy from the vibrations is 

transmitted into the user’s wrist, and therefore is not able to reach the other motors and disrupt 

their signals.  The final design has a strap that goes over the top of the watch so that the foam is 

pressed against the user’s wrist.  This means vibrations from any particular motor are isolated to 

the copper wire attached to that motor.  The user is then able to distinguish which wires are 

vibrating, and which ones are not. 

Unlike the mid-semester design, the final design does not incorporate a clock chip. 

Instead, a program was downloaded onto the microcontroller to control the time. Some 

microcontrollers have internal crystal oscillator to keep time, but they are usually on accurate to 

one tenth of a second. This circuit board has an external crystal oscillator that operates at 32.768 

kHz. This allows the microcontroller to keep a time accurate to one thousandth of a second. 

Also, the clock chip was left out to avoid adding unnecessary parts to the circuit. The battery 



 10 

would have to power the clock chip, as well as the microcontroller and vibro-motors. Without 

the clock, the battery will have a longer life, since it is supplying current to fewer devices. 

 

Final Design 

Circuitry 

The final design uses a relatively simple circuit to connect the microcontroller to the 

vibration motors, as well as several other components. The microcontroller controlling the entire 

device is the Atmel ATtiny24 (PDIP/SOIC package), a surface mount 8-bit AVR 

microcontroller. The ATtiny24 uses 12 programmable I/O lines to control the circuit 

components, and has two more lines corresponding to voltage and ground inputs. This adds up to 

a fourteen pin package. The final design only uses 10 of the I/O lines; four for the motors, three 

for switches, two for the connection of a quartz crystal, and one for an LED located on the circuit 

board (Figure 7). The entire circuit is powered by a 3V Energizer 123 lithium photo battery, 

which can output more than 900mA for over 3 seconds when activated.   



 11 

 

 

The motor wires, which connect directly to the vibration motor, are soldered into the 

holes marked JP2, JP3, JP4, and JP5 (Figure 7).  The motors, having identical circuitry, are 

organized into “motor units”. These motor units consist of a motor connected in parallel to a 

resistor, MOSFET, and diode, allowing current to flow safely into the motor.  The resistor (R1 

for motor 1 connected at JP2) is a 100 Ω 0805 surface mounted resistor, which is used to drop 

the current from the battery to 23mA.  The resistor is also connected in series with the battery.  

The MOSFET (Q1 for motor 1) is a BSH111 SOT123 field effect transistor used to ensure that 

current does not flow into the microcontroller.  The MOSFET drain, source, and gate are 

connected to the motor, ground, and microcontroller, respectively.  The diode (D1 for motor 1) is 

a 100V SOT23 surface mounted diode, and is absolutely crucial for proper motor function.  The 

motor, which basically acts as an inductor, will discharge current once the microcontroller input 

Figure 7: Circuit schematic. 



 12 

is turned off.  This diode, D1, will force the current to simply travel around the loop made by 

itself and the motor, effectively protecting the rest of the circuit from excessive current.  This 

“motor unit” is repeated for each motor.  

The microcontroller is also connected to three switches, which provide input to activate 

certain functions. The first function, activated by one switch, is to tell the microcontroller to 

display the current time. The other two switches are used to change the stored time in the watch, 

controlling the hours and minutes. The wires for the switches are soldered into the holes marked 

JP6, JP7, and JP8.  The switches, like the motors, are organized into a basic “switch unit”. The 

switch unit contains a switch connected in series to ground, and in parallel to two resistors (R6 

and R9 for the activation switch in Figure 7). One of the resistors, R6, is a 100 kΩ 0805 surface 

mounted resistor which is also connected to the battery. This resistor serves the purpose of 

dropping the voltage from the battery to a reasonable level when the switch is activated. The 

other resistor, R9, is a 1 kΩ 0805 surface mounted resistor connecting the switch, in parallel, to 

the microcontroller.  Finally, a diode (D6, k2 in Figure 7) is placed between R9 and the 

microcontroller, preventing electrostatic discharge from damaging it. This “switch unit” is 

repeated for each switch, as shown in Figure 7. 

In order to accurately keep track of time, the microcontroller is connected to a 32.768 

kHz quartz crystal. This crystal oscillation frequency corresponds to exactly one millisecond, 

which allows for extremely accurate time keeping.  This crystal (X1) is connected in parallel to 

the microcontroller and two identical capacitors, C1 and C2 (Figure 7). These capacitors allow 

the crystal to oscillate at the correct frequency, and are absolutely crucial for accurate time 

tracking. Each capacitor is a 100 pF 0805 surface mount capacitor, and in addition to being 

connected to the quartz crystal, is also connected in series to ground.  



 13 

Finally, the battery is connected via wires to the holes located at JP1.  Two capacitors are 

also located in close proximity to the microcontroller, in order to minimize electrostatic 

discharge. The first capacitor, C3, is a simple 10 µF 0805 surface mount capacitor. The second 

capacitor, C4, is a 100 nF ceramic capacitor, and is used to absorb most of the electrostatic 

discharge. Both capacitors are connected in parallel to the microcontroller voltage input, as well 

as ground.  

For the final prototype, the circuit schematic was used to make a printed circuit board 

(PCB), physically connecting all components. The final board layout is displayed in Figure 8. 

The actual board size is 1.4 inches long x 1.7 inches high by .062 inches high. The red lines are 

the traces connecting the components, like wires, and are located on the top of the board. 

  

 

 

 

 

 

 

 

 

 

This layout has several important features, the most important being copper plains. The 

entire top of the board, as outlined by the dashed red square, is connected to the positive battery 

terminal at JP1, effectively making it all one node. This allows each circuit component to easily 

Figure 8: The physical circuit 
board layout, as viewed from the 
top. The concentric circles at the 
corners of the board show where 
the mounting holes are located. 



 14 

and efficiently acquire the power it needs. The entire bottom of the board, which cannot be seen 

in Figure 8, is used as a grounded copper plain and has no circuit components located on it. Once 

again, this makes connecting individual components to ground very easy, primarily by the use of 

a via. A via, which is indicated by the small green holes in Figure 8, is simply a physical hole in 

the board, connecting the top and bottom of the board.   

Another important feature of the PCB is the placement of capacitors C3 and C4, which 

are located near the first pin of the microcontroller (U1 on the board).  The close physical 

proximity of these capacitors greatly minimizes the possibility of electrostatic discharge reaching 

the microcontroller, and subsequently damaging it. 

Programming 

The previous team working on this project, created code in Delphi5, most commonly 

known as Pascal. While this language is very user-friendly and easy to code, it cannot be 

implemented for use in a microcontroller. A watch programmed with this language could have 

full time-telling functionality and would be very easy to develop code for it, however it would 

have to remain connected to a computer, defeating the overall purpose of a watch.  

After speaking with two experts in the area (Mike Morrow and Erick Oberstar), it was 

deemed that an ATMEL microcontroller should be used in this project, which entails using either 

programming the microcontroller in the C language or coding in assembly language.  

C is a high-level language, making it easy to communicate basic thoughts and processes 

into usable code. Assembly on the other hand, is a very low-level language, only one step above 

programming in binary(1’s and 0’s) and proves much more difficult for novice programmers to 

use. Instructions in this language are very rudimentary and involve hexidecimal notation to jump 



 15 

from one command or register (memory slot for a variable) to another. After talking with Erick 

Oberstar, it was confirmed that the code for this project should be written in C. 

 After the language was decided upon, a compiler and assembler had to be chosen. The 

compiler and assembler allow the user to write the code on a computer, which will then be 

translated into a machine language, and written to the FLASH memory on the microcontroller.  

After researching several options, the C compiler software program CodeVision AVR was 

chosen.  CodeVision AVR is a high-performance C compiler that allows for quick and efficient 

programming of microcontrollers (AVRFreaks, 2006). It also included a user-friendly graphical 

user interface for writing code to the STK500 development board. This application is available 

for use on all CAE computers, free for use by College of Engineering students. 

Once the language and assembler/compiler were chosen, the actual programming of the 

microcontroller commenced. A development platform, needed to send information from the 

computer and write in on the chip, proved to be an integral part of initial coding. Instead of 

attempting to write out the code in one large chunk, small steps were taken to ensure basic 

processes could be successful developed.  

Eight small LED’s and eight push button switches are incorporated on the STK500 

development board. By connecting the pins on the microcontroller to these, one can begin to 

develop by incorporating basic input/output methods by either turning lights on or off, or by 

pushing buttons.  Due to CodeVision AVR’s superior functionality, placing a few simple checks 

in boxes sets the pins on the microcontroller to be either input or output pins. Once the 

microcontroller was setup, initial programming to interface the chip began. 

There are two separate processes for the program: one that keeps track of time and one 

that keeps track of whether or not the user-activated button has been pressed, which in turn 



 16 

controls whether or not the time needs to be displayed. The different processes are referred to as 

“states” in programming jargon, which references the concept of finite state machines. In this 

philosophy, a program remains looping in one state, until a certain event (i.e. a button is pushed) 

and then jumps to another state in which then it can stay in that state or return to the original state 

(see figure 9). 

 

 

 

 

 

 

 

Using the basics of this philosophy, the program loops between two states: Timer and 

Display time. The function of Timer is simple; it keeps track of time.  Display time, on the other 

hand, has three functions: display the output, turn the pushed button back to false, and return to 

the original state: Timer. This allows for continual looping, which saves power by eliminating 

the need to always have motors on.  

Using these two programming loops allowed for the coding of one giant “while” loop. 

The global variables used were sec, H1, H2, M1, M2, and turnedOff.  All variables are of the 

char type, which is an 8 bit variable, to save space on the microcontroller.  Sec, keeps track of 

seconds, H1 keeps track of the hours’ tens digit, H2, the hours’ one digit, M1, the minutes’ tens 

digit and M2, minutes’ ones digit. These digits were set to the digits corresponding to the current 

time. By splitting the hour and minute digits into two variables, it provided an easy method for 

Figure 9: Finite state diagram for 
programming. 



 17 

converting the time into four digits and executing the different motor sequences.  TurnedOff 

keeps track of whether or not the button is pushed and was initialized to 1, stating that it is false. 

Five different microcontroller pins were also used as variables.  Four were used as outputs to 

display the digits and had to be referenced as Port instead of Pin: PortA.4, PortA.5, PortA.6, and 

PortA.7 to display the digits. For the pushbutton interface, the variable PinA.2 was initially set to 

false, and is only changed when the button is physically depressed. 

In order to minimize code, the entire program is included in the interrupt, so that the 

program would interrupt every second and then consequently increment the seconds, minutes 

and hours variables. Two main ‘if statements’ were embedded in the interrupt section, which 

tested which state the program was currently in. Since the code is compiled by the machine so 

quickly, interrupting during displaying the time would not prove to be problematic. 

 If the button was pushed the variable turnedOff turned to true in which the code then 

entered an inner-loop, which displayed the time. Output pins 4, 5, 6, and 7 were turned on 

according to which digit needed to be displayed. Each variable, H1, H2, M1, and M2 was 

checked to see value it contained and then was displayed one at a time starting with H1 then 

pausing using the delay_ms function one second then displaying the next digit until all four 

digits were successfully displayed. The turnedOff button was then reset to true.  

After the code was up and running, there were several bugs in the code. All digits were 

tested to ensure that they displayed correctly. Initially some digits displayed incorrectly so the 

code was changed accordingly. In addition the time was originally incrementing too quickly. In 

order to fix this problem, an oscilloscope was used. By hooking it up to an unused output pin, the 

device showed when the chip was interrupting (incrementing the seconds) and how long these 

intervals were. By using this method, it was determined that the microcontroller clock chip was 



 18 

being interfaced incorrectly by the code due to the fact it assumed the clock chip was operating 

at a different frequency then it actually was. Once the correct frequency values were obtained 

and integrated into the program, the board was again hooked up to the oscilloscope which 

determined the program was interrupting at the correct interval: every 1 second. 

  



 19 

Testing 

The purpose behind testing the device was to develop a setup for proper two-point 

discrimination. First, a developing platform was made to determine the best separation of the 

motors (Figure 10). 

 

 

 

 

 

 

 

 

 

With the consent of the client, it was decided upon to place the motors so two would transmit a 

vibration to the index finger and so two would transmit a vibration to the middle finder. This 

way, there is less confusion between which motor is vibrating, because there are only two per 

finger, and they are spaced far apart. The vertical separation between the motors is 3 cm. 

 Next, the power source needs to supply the proper amount of current to each motor. If the 

current is too small, it is difficult to feel when the motor is activated. However, if the current is 

too large, it is nearly impossible to distinguish a vibration in one motor from another. Tests 

concluded that the optimal amount of current to be sent to each motor should be between 22 and 

25 mA (Figure 11). The corresponding voltage is 1 to 1.8 V dropped at each motor. 

Figure 10: Setup for determining optimal 
separation between fingers. 



 20 

 

 

 

 

 

 

 

 

The microcontroller code was tested with several different people as users. They were 

instructed which button to push and were also provided with a diagram on how to read the 

“Braille” displayed by the sample LED’s. Although a bit tricky for those not familiar with Braille 

numbers, the users were able to successfully tell the time. Further calibrations of the pauses 

between the different digits were made to ensure that optimal time was given between the digits. 

This was tested by exposing people familiar to reading Braille, to the prototype and then having 

them recite the time.  Those unfamiliar with Braille would have a hard time being able to figure 

out the time with quicker pauses. Finally the accuracy of the display was checked. After two 

hours of use, the watch was still precise to the minute. 

 

Future Work  

Now that the watch can keep track of time and work as one stand-alone unit, a future 

team can start adding functions to the watch.  One function that needs to be added is the ability to 

adjust the time.  One could do this by adding two buttons, one for hours, one for minutes, which 

have the sole purpose of setting the time.  The time keeping program would need to be modified 

Figure 11: Testing voltage versus 
current for each individual motor. 
The “desired range” indicates the 
amount of current that should be 
place through the motor that 
gives an ideal vibration. This also 
shows the corresponding voltage 
for the input current.  



 21 

slightly to recognize these input functions.  With these time-altering buttons on the watch, there 

would be a possibility of unintentionally changing the time.  To avoid accidentally altering the 

time when these extra buttons are bumped, a future team would have to program the watch so 

that it is only possible to alter the time after, for example, holding the two buttons down for a 

few seconds. 

 Another function that could be added is the ability to display the date.  The watch can 

theoretically display the date using a sequence of numbers.  This would need to be added to the 

time-keeping program, and either use the same prompt button, or add a second button that tells 

the watch to display the date.  If the team decided to use the same button, they could have the 

watch display four numbers – two for month, two for date – following the four number time 

sequence.  It would be slightly more difficult to integrate a separate button to be used for 

displaying the date, but this would be more convenient, easier to use, and less confusing for the 

user. 

 Finally, if this product is going to be commercially produced and widely used, the 

housing and overall aesthetics need to be improved.  Currently, the motors are on the outside of 

the watch, which is not the most structurally sound design.  Our design is definitely not weather 

resistant.  Currently, the watch is rather large.  The height of the watch could certainly be 

reduced.  One way to do this would be to embed the circuit components into the viscoelastic 

foam.  The copper wires could also be shortened slightly to further reduce the height.  In 

addition, a flip cover could be added to keep the protruding copper wires from getting snagged 

on an article of clothing or other objects. 

 



 22 

Appendix A: Product Design Specifications 
 

 

Product Design Specification for BME 300 Group 33: Digital Braille Watch (As of October 22, 

2008) 

 

Group Members: Joel Gaston, Robert Bjerregaard, Alison McArton, Ryan Kimmel 

Problem Statement:  

The visually impaired currently rely on watches that audibly announce the time, or tactile 

analog watches that must be carefully examined to tell time. These options can be disruptive, 

fragile, and prone to misreading. Our goal is to create a digital Braille watch that employs 24-

hour notation to tell the time, does not cause disruptions, and is robust enough to have a long 

service-life. The Braille display must be sized so that the user can accurately and reliably 

distinguish the different digits displayed. 

 

Client Requirements: 

• Digital military time watch 

• Watch must fit on the wrist, or in a typical pocket 

• Silent system 

• Braille numbering must be used to display the time 

 

 

 

 

1. Design Requirements 



 23 

The device must meet all of the client requirements 

a. Performance requirements: Audible noises must not be emitted from the watch 

b. Safety: The watch cannot contain toxic materials, and all wires must be internal 

c. Accuracy and Reliability: The watch must tell time to an accuracy of one minute 

d. Life in Service: The watch must have a life-span of several years 

e. Shelf Life: The watch must have a shelf life of 10 years 

f. Operating Environment: The device must be able to operate in a dry environment and be 

able to endure water, humidity, and temperatures between -30 and 50 degrees Celsius 

g. Ergonomics: The device must be able to be worn or carried as a pocket watch, and should 

not have any rough edges or loose electrical components 

h. Size: The watch must fit in a typical pocket 

i. Weight: The device must weigh at most .2 kilograms 

j. Materials: The device must be comprised of non-toxic components 

k. Aesthetics, Appearance, and Finish: The watch must be aesthetically pleasing 

 

2. Product Characteristics 

a. Quantity: Only one working prototype.  Could be mass produced based on demand and 

performance. 

b. Target Product Cost: Unknown at this time 

 

 

 

3. Miscellaneous 



 24 

a. Standards and Specifications:  The client has a patent pending 

b. Customer: The customer would like a device that physically displays the time using 

Braille digits. Possible functions include a power-saving function and a flip cover 

c. Patient Related Concerns: None 

d. Competition: Watches for the visually-impaired are commercially available, in both 

audible and analog Braille varieties 



 25 

Appendix B: References 

Block, W. Personal Interview. 10 Oct. 2008. 
 
“DS1315 Phantom Clock Chip.” 21 Oct. 2008. 

<http://www.maximic.com/quick_view2.cfm/qv_pk/2692/t/al> 
 
Morrow, M. Personal Interview. 10 Oct. 2008. 
 
Tang, A., Raju, V., Boumeester, A., & Loherentz, A. (2008) “Digital Braille Watch.” 
 
Wayne D. Thompson, Kentucky Department for the Blind, 

<http://www.blind.ky.gov/Technology/BrailleClock/clock_description.txt> Retrieved 24 
Sep. 2008 

Codevisionavr-standard. (2006). Message posted to 
http://www.avrfreaks.net/index.php?func=viewItem&item_id=146&module=Freaks%20To
ols  

Gadre, D. (2000). Programming and customizing the avr microcontroller (1st ed.) McGraw-Hill 
Professional Publishing.  

Oberstar, Erick (Personal communication. December 1, 2008).  

Oberstar, Erick (Personal communication. December 2, 2008).  

Oberstar, Erick (Personal communication. December 3, 2008).  

8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. Jan. 2008. 
<http://www.atmel.com/dyn/resources/prod_documents/doc8006.pdf>  

 
AVR035: Efficient C Coding for AVR. Jan. 2004. 
<http://www.atmel.com/dyn/resources/prod_documents/doc1497.pdf>. 

 
AVR055: Using a 32kHz XTAL for run-time calibration of the internal RC. Jul. 2008. 
<http://www.atmel.com/dyn/resources/prod_documents/doc8002.pdf>. 
 
Stk500 User Guide. Mar. 2003. 
<http://www.atmel.com/dyn/resources/prod_documents/doc1925.pdf>. 
 
Stk505 User Guide. 2005. 
<http://support.atmel.no/knowledgebase/avrstudiohelp/mergedProjects/STK505/STK505.htm>. 



 26 

Appendix C: Code 

/***************************************************** 
This program was produced by the 
CodeWizardAVR V2.03.8a Evaluation 
Automatic Program Generator 
© Copyright 1998‐2008 Pavel Haiduc, HP InfoTech s.r.l. 
http://www.hpinfotech.com 
 
Project :  Braille Watch 
Version :  
Date    : 12/3/2008 
Author  : Freeware, for evaluation and non‐commercial use only 
Company :  
Comments:  
 
 
Chip type           : ATmega8515 
Program type        : Application 
Clock frequency     : 8.000000 MHz 
Memory model        : Small 
External RAM size   : 0 
Data Stack size     : 128 
*****************************************************/ 
 
#include <mega8515.h> 
#include <delay.h> 
 
char sec = 0;   
char H1 = 1; //hard code values 
char H2 = 2;  
char M1 = 4 ; 
char M2 = 2; 
 
char turnedOff=1; 
 
// Timer 1 output compare A interrupt service routine 
interrupt [TIM1_COMPA] void timer1_compa_isr(void) 
{ 
// Place your code here 
 PORTB.0= ~PORTB.0;  
        sec++; 
        turnedOff = PIND.2; 
        if(sec==60) 
           { 
              sec = 0; 
               M2++; 
             } 
 
           if(M2==10) 
           { 
              M2=0; 
              M1++; 
           } 
 
           if (M1 == 6) 
           { 
                M1 = 0; 
                H2 ++; 
                } 
 
           if(H2 == 10) 
           {   
                H2 = 0; 
                H1++; 
            } 
 
            if (H1 == 3) 



 27 

            { H1=0; } 
         
            if(!turnedOff) 
            { 
                 turnedOff = 1; //set back to true 
                 PORTA.4 = 1; 
                PORTA.5 = 1; 
                 PORTA.6 = 1; 
                 PORTA.7 = 1; 
 
                delay_ms(1000); 
 
                if(H1==0) 
                { 
                  PORTA.4=0; 
                  PORTA.5=0; 
                  PORTA.7=0; 
                } 
 
                else if(H1 == 1) 
                { PORTA.6=0;} 
 
                else if (H1== 2) 
                { 
                        PORTA.6=0; 
                        PORTA.7= 0; 
                } 
 
                //HOURS 1'S DIGIT DISPLAY 
 
                delay_ms(1200);               
                PORTA.4 = 1; 
                PORTA.5 = 1; 
                 PORTA.6 = 1; 
                 PORTA.7 = 1; 
                 delay_ms(500); 
 
                if(H2==0) 
                { 
                 PORTA.4=0; 
                 PORTA.5=0; 
                 PORTA.7=0; 
                } 
 
                else if(H2 == 1) 
                { PORTA.6=0;} 
 
                else if (H2== 2) 
                { 
                 PORTA.6=0; 
                 PORTA.7= 0; 
                } 
 
                else if(H2 == 3) 
                { 
                    PORTA.4 = 0; 
                    PORTA.6 = 0; 
                } 
 
                else if(H2 == 4) 
                { 
                PORTA.4 = 0; 
                PORTA.5 = 0; 
                PORTA.6 = 0; 
                } 
 
                else if(H2 == 5) 
                { 
                         PORTA.5 = 0; 



 28 

                         PORTA.6 = 0; 
                } 
 
                else if(H2 == 6) 
                { 
                  PORTA.4 = 0; 
                  PORTA.6 = 0; 
                  PORTA.7 = 0; 
                } 
 
                else if(H2 == 7) 
                { 
                 PORTA.4 = 0; 
                 PORTA.5 = 0; 
                 PORTA.6 = 0; 
                  PORTA.7 = 0; 
                } 
                else if(H2 == 8) 
                { 
                      PORTA.5 = 0; 
                      PORTA.6 = 0; 
                      PORTA.7 = 0; 
                } 
 
                else if(H2 == 9) 
                { 
                 PORTA.4 = 0; 
                 PORTA.7 = 0; 
                }  
 
                //Display Minutes tens digit 
 
                delay_ms(1200); 
                  PORTA.4 = 1; 
                      PORTA.5 = 1; 
                      PORTA.6 = 1; 
                      PORTA.7 = 1;   
 
                      delay_ms(800); 
                      sec++; 
 
                if(M1==0) 
                { 
                        PORTA.4=0; 
                        PORTA.5=0; 
                        PORTA.7=0; 
                } 
 
                else if(M1 == 1) 
                { PORTA.6=0;} 
                else if (M1 == 2) 
                { 
                        PORTA.6=0; 
                        PORTA.7= 0; 
                } 
 
                else if(M1 == 3) 
                { 
                        PORTA.4 = 0; 
                        PORTA.6 = 0; 
                } 
 
                else if(M1 == 4) 
                { 
                       PORTA.4 = 0; 
                       PORTA.5 = 0; 
                       PORTA.6 = 0; 
                } 
 



 29 

                else if(M1 == 5) 
                { 
                      PORTA.5 = 0; 
                      PORTA.6 = 0; 
                } 
 
                //Display minutes one's digit 
 
                delay_ms(1200); 
                PORTA.4 = 1;    //reset motors to off 
                PORTA.5 = 1; 
                PORTA.6 = 1; 
                PORTA.7 = 1;      
 
                delay_ms(1200); 
 
                if(M2==0) 
                { 
                        PORTA.4=0; 
                        PORTA.5=0; 
                        PORTA.7=0; 
                } 
 
                else if(M2 == 1) 
                { PORTA.6=0;} 
 
                else if (M2== 2) 
                { 
                        PORTA.6=0; 
                        PORTA.7= 0; 
                } 
 
                else if(M2 == 3) 
                { 
                        PORTA.4 = 0; 
                        PORTA.6 = 0; 
                } 
 
                else if(M2 == 4) 
                { 
                       PORTA.4 = 0; 
                      PORTA.5 = 0; 
                       PORTA.6 = 0; 
                } 
 
                else if(M2 == 5) 
                { 
                      PORTA.5 = 0; 
                      PORTA.6 = 0; 
                } 
 
                else if(M2 == 6) 
                { 
                      PORTA.4 = 0; 
                      PORTA.6 = 0; 
                      PORTA.7 = 0; 
                } 
 
                else if(M2 == 7) 
                { 
                      PORTA.4 = 0; 
                      PORTA.5 = 0; 
                      PORTA.6 = 0; 
                      PORTA.7 = 0; 
                } 
 
                else if(M2 == 8) 
                { 
                      PORTA.5 = 0; 



 30 

                      PORTA.6 = 0; 
                      PORTA.7 = 0; 
                } 
 
                else if(M2 == 9) 
                { 
                      PORTA.4 = 0; 
                     PORTA.7 = 0; 
                } 
 
            delay_ms(1200); 
                PORTA.4 = 1;    //reset motors to off 
                PORTA.5 = 1; 
                PORTA.6 = 1; 
                PORTA.7 = 1;   
           } 
} 
 
// Declare your global variables here 
 
void main(void) 
{ 
// Declare your local variables here 
 
// Input/Output Ports initialization 
// Port A initialization 
// Func7=Out Func6=Out Func5=Out Func4=Out Func3=In Func2=In Func1=In Func0=Out  
// State7=0 State6=0 State5=0 State4=0 State3=T State2=T State1=T State0=0  
PORTA=0x00; 
DDRA=0xF1; 
 
// Port B initialization 
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In  
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T  
PORTB=0x00; 
DDRB=0x00; 
 
// Port C initialization 
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In  
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T  
PORTC=0x00; 
DDRC=0x00; 
 
// Port D initialization 
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In  
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T  
PORTD=0x00; 
DDRD=0x00; 
 
// Port E initialization 
// Func2=In Func1=In Func0=In  
// State2=T State1=T State0=T  
PORTE=0x00; 
DDRE=0x00; 
 
// Timer/Counter 0 initialization 
// Clock source: System Clock 
// Clock value: Timer 0 Stopped 
// Mode: Normal top=FFh 
// OC0 output: Disconnected 
TCCR0=0x00; 
TCNT0=0x00; 
OCR0=0x00; 
 
// Timer/Counter 1 initialization 
// Clock source: System Clock 
// Clock value: 62.500 kHz 
// Mode: Normal top=FFFFh 
// OC1A output: Discon. 



 31 

// OC1B output: Discon. 
// Noise Canceler: Off 
// Input Capture on Falling Edge 
// Timer 1 Overflow Interrupt: Off 
// Input Capture Interrupt: Off 
// Compare A Match Interrupt: On 
// Compare B Match Interrupt: Off 
TCCR1A=0x00; 
TCCR1B=0x03; 
TCNT1H=0x00; 
TCNT1L=0x00; 
ICR1H=0x00; 
ICR1L=0x00; 
OCR1AH=0x3d; 
OCR1AL=0x01; 
OCR1BH=0x00; 
OCR1BL=0x00; 
 
 
// External Interrupt(s) initialization 
// INT0: Off 
// INT1: Off 
// INT2: Off 
MCUCR=0x00; 
EMCUCR=0x00; 
 
// Timer(s)/Counter(s) Interrupt(s) initialization 
TIMSK=0x40; 
 
// Analog Comparator initialization 
// Analog Comparator: Off 
// Analog Comparator Input Capture by Timer/Counter 1: Off 
ACSR=0x80; 
 
// Global enable interrupts 
#asm("sei") 
 
while (1) 
      { 
      // Place your code here 
      }; 
} 
 
 


