Bioreactor Cassette for Stem Cell Culture

Allison Johnson, Kimberli Kamer, Elise Larson, Laura Zeitler

BME 400 October 15, 2010

Client Dr. Derek Hei *Waisman Clinical Biomanufacturing Facility*

Advisor Prof. Naomi Chesler Dept. of Biomedical Engineering

Overview

- Background
 - Stem Cell Culture
 - Bioreactor System
 - Current Solutions/Competition
- Design Proposal and Specifications
- Current Status
- Cell Testing
- Future Work
- Acknowledgments

Problems with Stem Cell Culture

- Sensitive to environment
 - Daily media change
 - Chemical leaching can cause undesired differentiation
- Clinical limitations
 - Desire individualized therapies
 - Mass production is not yet feasible

Pluripotent stem cell^[1]

[1] KU Medical Center (2010). "Stem Cell Research 101" University of Kansas Medical Center. http://www.kumc.edu/stemcell/images.html

Current Solutions

Static culture^[2]

CLINIcell Cassette^[3]

[2] Corning (2010). "Corning® Ultra-Low Attachment 75cm² Rectangular Canted Neck Cell Culture Flask with Vent Cap (Product #3814)" *Corning: Life Sciences . http://catalog2.corning.com/*

[3] Innomeditch Technologies. "CLINIcell Cassette". Innomeditch Technologies. http://www.innomt.com/products/products02_02_04.htm

Design Proposal

Design a cassette system that interfaces with a perfusion bioreactor and provides appropriate conditions to culture several different samples of iPS cells without exchanging media between them.

Specifications

- •Use gas-impermeable growth plates
- •Be optically transparent
- •Allow metabolic monitoring
- •Avoid chemical leaching
- •Minimize media use

Bioreactor System^[4]

[4] Hei, Derek (2010). "Bioreactor Perfusion Design" Waisman Clinical Biomanufacturing Facility, University of Wisconsin-Madison.

Project Status: Cassette Design

Dimensions in cm

Project Status: Dye Studies

20 min

1 hour

4 hours

8 hours

24 hours

Cell Testing

- HEK-293: Human embryonic kidney cells
 - Differentiated cells
 - Test: General cell viability and growth, spatial variations
- IMR-90: iPS cell line
 - Undifferentiated
 - Test: Ability to maintain cells in undifferentiated state

Expected Results: Proliferation Dye Study

Expected Results: Crystal Violet Stain

- Evaluation of seeding uniformity
- Compare crystal violet stain in 1 cm² sections at Day 4
- Analyze with chi squared test
- Expect no statistical difference between control and perfusion cassette

III

Perfusion Cassette

Static Culture

Expected Results: Trypan Blue Viability Stain

- Evaluation of viability with respect to location
- Compare viability between zones and systems at Day 4
- Analyze with unpaired, independent Student t-test
- Expect viability differences between zones and systems

Future Work

- Testing with IMR-90 cells
- Bubble regulation
 - External bubble trap
 - Modify design
- Testing with efflux pH monitoring

Possible external bubble trap

Acknowledgements

- Dr. Hei, Bill Kreamer, Diana Drier
- Kyle Ripple, Carol Elmer
- Dr. Mackie, Dr. Hancock
- Sheku Kamara, Vince Anewenter

Questions?