Digital Braille Watch

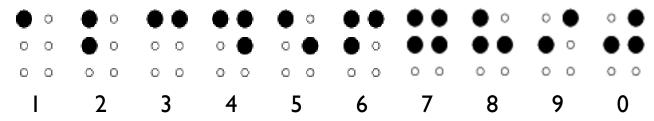
October 15th 2010

Nick Anderson – Leader Taylor Milne – Communicator Chandresh Singh – BWIG Kyle Jamar – BSAC

Clients: Holly and Colton Albrecht

Advisor: John Puccinelli

Overview


- Problem Statement
- Braille Background
- Current Methods
- Preliminary Designs
- Design Matrix
- Final Design
- Future Work

Problem Statement

- Develop a Digital Braille Watch that...
 - Uses the standard Braille number system
 - Displays military time
 - Is silent, easy to read and accurate

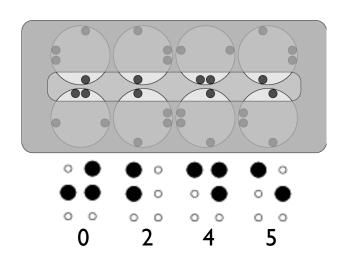
Braille Background

- Size standards
 - Each character consists of 3x2 grid
 - Dots at least 0.092 in apart
 - Characters at least 0.245 in. apart
 - Distances should all be uniform
- Four characters needed to display time
- Braille numbers use only top 4 positions

Current Methods

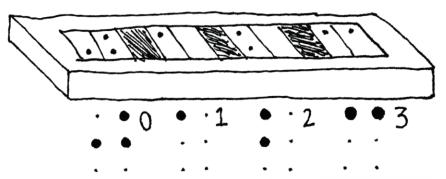
- Talking Watch
 - Disruptive
- Tactile Watch
 - Fragile
 - Difficult to read

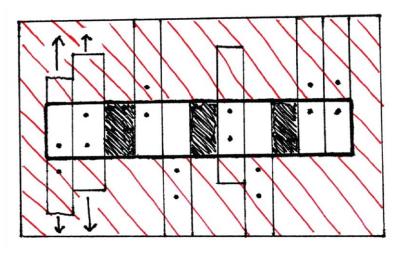
http://watchluxus.com/braille-watches-by-auguste-reymond


- Haptica Braille watch
 - Idea developed by David Chavez
 - Just a concept, no design

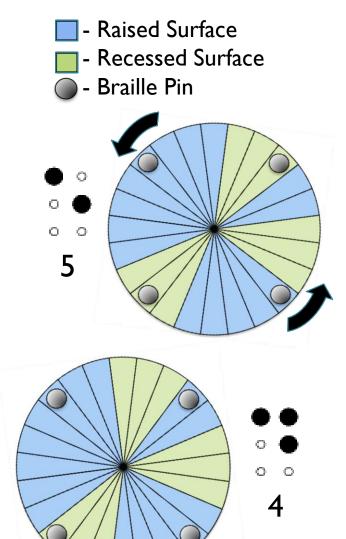
http://www.tuvie.com/haptica-braille-watchconcept/

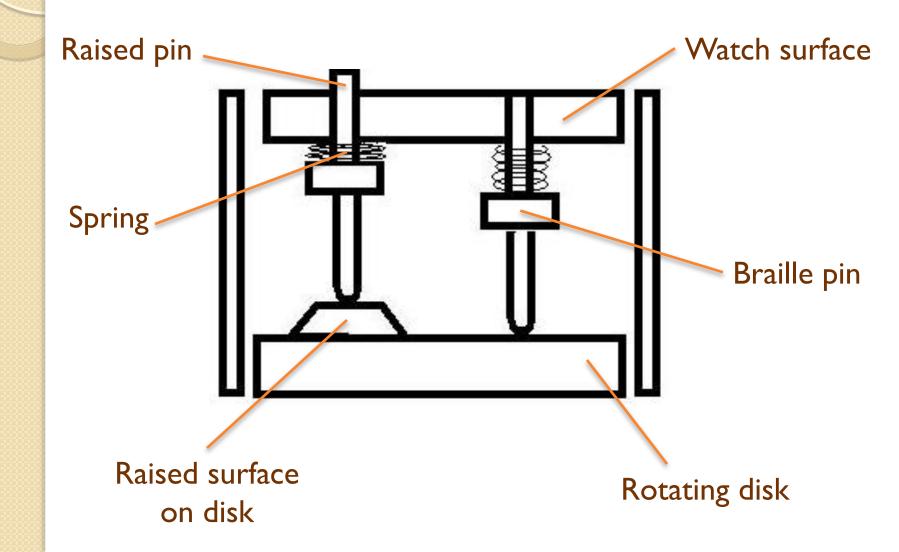
Design Option 1: Rotating Disks


- Eight disks rotate to display the time
- Pros
 - Met client requirements
 - Multiple functions
 - First existing Digital Braille Watch
- Cons
 - High power consumption
 - Large size
 - Lacks precision



Design Option 2: Sliding Plates


- A pair of sliding plates make up each digit, providing one, two or no dots as necessary
- Pros
 - Small size
 - No ambiguity in dot placement
- Cons
 - Eight moving parts
 - High power consumption



Design Option 3: Disk and Pins

- Pins are raised or lowered based on the position of the disk below
- Pros
 - Low power consumption
 - No ambiguity in dot placement
 - Small size
- Cons
 - Little room for alignment error

Disk and Pins (continued)

Design Matrix

Weight	Design Aspects	Rotating Disks	Sliding Plates	Disk and Pins
0.05	Prototype Cost	6	7	9
0.15	Aesthetics	7	8	9
0.25	Ergonomics	7	8	9
0.05	Safety	9	9	10
0.10	Durability	8	8	8
0.15	Accuracy	10	10	10
0.15	Design Simplicity	9	9	7
0.10	Scalability	5	10	9
1	Total	7.70	8.65	8.80

Servos

- Can provide desired rotation
- Only 165 degrees of rotation required
- Servos much smaller than those used last semester

Microcontroller

- Only need to control 4 servos
- Arduino Mini
- Braille Pins
 - Thin plastic (ABS) rods

http://www.robothk.com/products m18.asp?lang=en

http://www.robotshop.ca/arduino-minimicrocontroller.html

Future Work

- Finalize design
- Order materials
- Assemble prototype
- Testing and adaptation
- Finish prototype

Acknowledgments

- Holly and Colton Albrecht
- John Puccinelli
- Spring 2010 Braille Watch Design Team
- Biomedical Engineering Department

References

- http://www.pharmabraille.co.uk/braille-alphabet.html
- http://watchluxus.com/braille-watches-by-auguste-reymond
- http://www.tuvie.com/haptica-braille-watch-concept/
- http://www.robot-hk.com/products_m18.asp?lang=en
- http://www.robotshop.ca/arduino-mini-microcontroller.html