Digital Braille Watch

Nick Anderson Chandresh Singh Kyle Jamar Taylor Milne Client: Holly and Colton Albrecht Advisor: John Puccinelli ${ }^{1}$ ${ }^{1}$ Department of Biomedical Engineering - University of Wisconsin-Madison

Final Design

- A well-designed watch would allow for more independence Current watch designs for the visually impaired are disruptive and

Goal: To create a digital Braille watch that allows the user to accurately and discretely check the time

References

${ }^{[1]}$ "Size and Spacing of Braille Characters." Braille Authority of North America. n.d. $[1]$ "Size and Spacing of Braille Characters." Braille Authority of North
27 Jan. 2010. http://www.Brailleauthority.org/sizespacingofBraille/. 27] "Braille Watch". UW-Madison Biomedical Engineering Design Courses - Project Pages. 2008. 11 Feb. 2010. ArduinoBoardDuemilanove?action=dift [3] "Haptica Braille Watch Concept". Tuvie Design of the Future. 2009. 25 Jan. 2010.
http://www.tuvie.com/haptica-Braile-wath-concept.
tme

Background

Braille Basics ${ }^{[1]}$
Method of written communication used by the visually mpaired
Numerical characters use a two-by-two grid all ten numb combinations of raised or lowered dots,
raille Numerals (Figure 1)

Motivation

visually impaired frequently rely on others to determine the

Design Concept (Figure 3

- Four rotating disks located beneath watch - Four rotating disks located beneath - Each disk has raised and recessed surfaces, which raise and lower pins creating desired number

Features

- Programmed using Arduino
- Many components manufactured using
three-dimensional printer
- Three modes
- First mode: Hours and minutes
- Second mode: Minutes and seconds
- Third mode: Month and day

Disks (Figure 4)

- Control pin elevation

Figure 3 : The raised and recessed surfaces
on the disk caused dififerent numbers to be
displayed

Servos (Figure 5)

- Controlled with Arduino

Pins (Figure 6)

- Serve as Braille dots
- Serve as Braille dots spring

Casing (Figure 2)

- Composed of three elements - Specialized compartments allow for easy assembly

Testing (Figure 7 and Figure 8)

Surveyed visually impaired individuals All were familiar with the current devices 96% thought the date "I feel that a Braille Digita Watch would be a lot easier to use"

Is the Digital Braille Watch an
No - 8\% improvement?

I would recommend using the Digital

Design Criteria

Client Requirements

- Display military time
- Silent and without vibrations
- Improve on previous BME designs ${ }^{[2]}$ (Figure 9)
- Time displayed in standard Braille Functionality
- Accurate and reliable - User-friendly

Additional Specifications Figure 9 : Vibrating dots
prototyee created by past prototype created by pas
BME design team - Aesthetically pleasing
 - Safe

Competition

Audible Watch
(Figure 10)

- Audibly communicates
the time
- Disruptive

Analog Tactile Watch
(Figure 11)

- Similar to standard
analog watch
- Difficull to read
- Fragile

Figure 10: The Audible Figure 10 The Audible
Watch announces the Watch announces the
time to the user when
prompled

Figure 11: The user
deeermines the time by determines the time by
feeling the display

Haptica Braille Watch ${ }^{[3]}$
(Figure 12)

Figure 12: Sixteen - Designed by David Chavez - Individual dots move in and out of display to form Braille numerals

- Just a design; no mechanis
magecourresy of Tuve oesesig

Future Work

Size Reduction
Use smaller servos with a gear mechanism

- Smaller, more efficient power source

Custom parts
Testing

- Observe functionality over a longer period of time

Optimization
Rechargeable battery
Radio-controlled time

Acknowledgements

-John Puccinell
-Colton Albrecht -Holly Albrecht

