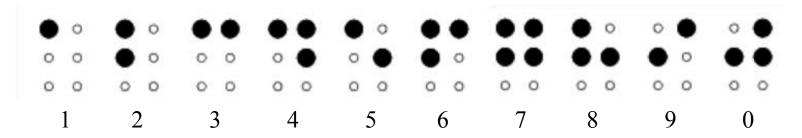
Digital Braille Watch

Chandresh Singh – Leader & BWIG Nick Anderson – Communicator Luke Juckett – BSAC

Clients: Holly and Colton Albrecht

Advisor: John Puccinelli


October 21st 2011

Overview

- * Braille Background
- * Problem Statement
- * Current Methods
- * Design Summary
- * Refinements
- * Manufacturing Considerations
- * Future Work

Braille Background

- * Size standards
 - * Each character consists of 3x2 grid
 - * Dots at least 0.092 in. apart
 - * Characters at least 0.245 in. apart
- * Four characters needed to display time
- * Braille numbers use only top 4 positions

Problem Statement

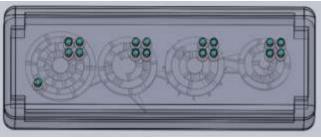
- * Develop a Digital Braille Watch that...
 - * Uses standard Braille numbering and spacing
 - * Has a self-contained power supply
 - * Can be manufactured accurately with durable materials
 - * Is the size of a standard wristwatch

Current Methods

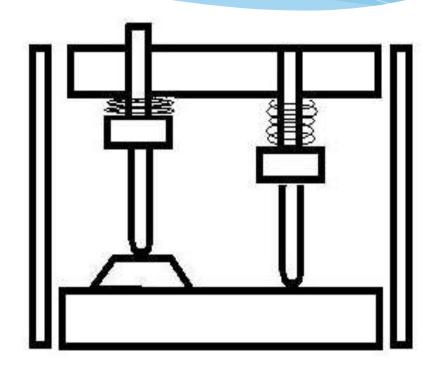
- * Talking Watch
 - * Disruptive
- * Tactile Watch
 - * Fragile
 - * Difficult to read
- * Haptica Braille watch
 - * Idea developed by David Chavez
 - * Just a concept, no design

http://watchluxus.com/braille-watches auguste-reymond


http://www.tuvie.com/haptica-braille-watchconcept/

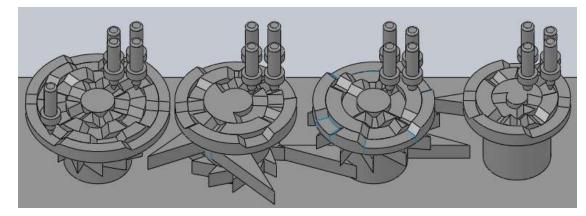

Past Design Projects

*MANY!!!



Design Feature 1 – Pin Mechanism

- * Pins rest atop a disk with raised and lowered surfaces
- * Raised pins can be detected

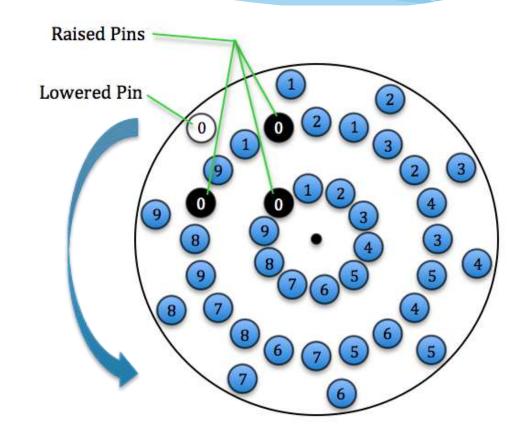


Design Feature 2 – Disk Surface

- * 4 pins rest upon each disk to create a Braille number
- * Each disk surface is designed differently to correspond with the numbers it must display

Hour

Minutes

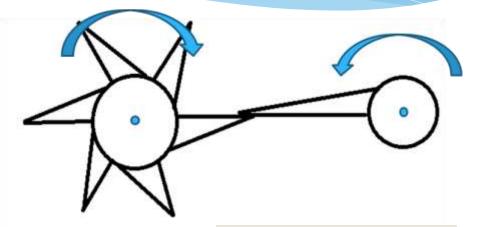

Disk #1:
Displays
o or 1

Disk #2:
Displays
1-9; 0-2

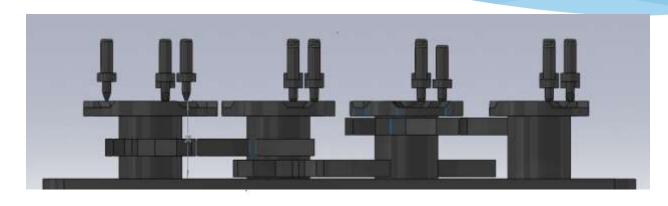
Disk #3: Displays 0-5 Disk #4: Displays 0-9

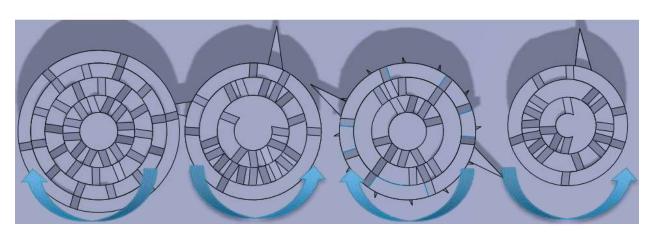
Design Feature 2 – Disk Surface

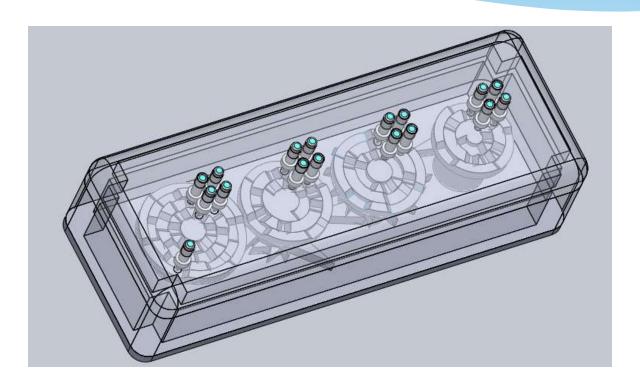
- * 4 pins rest upon each disk to create a Braille number
- * Each disk surface is designed differently to correspond with the numbers it must display



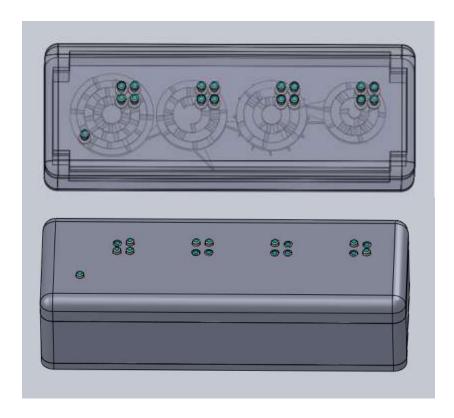
Design Feature 2 – Disk Surface


Design Feature 3 – Gear Mechanism

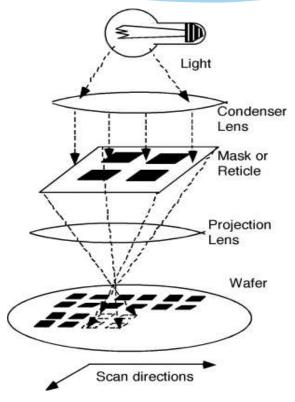

- * Complete rotation of one tooth gear corresponds to a partial rotation of another
- * Creates "odometer effect"



Design Feature 3 – Gear Mechanism


Complete Assembly

But it's not perfect yet...

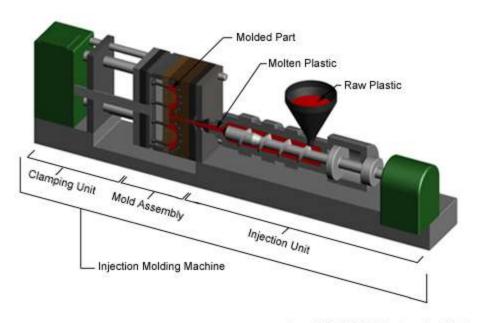

Design Improvements

- * Size reduction
 - * Overlapping disks
 - * Minimize thickness
- * Correct spacing between characters

Manufacturing Option 1 – Photolithography

- * Use UV light to create a geometric pattern from a photo mask
- * Pros
 - * Microscopic features
- * Cons
 - * Difficult to create 3D geometry
 - * Cannot make metal parts

http://cnx.org/content/m1037/latest/5.15.png


Manufacturing Option 2 – CNC Milling

- * Computer numerical control to machine solid materials
- * Pros
 - * Metal parts
 - * Accurate up to 25 uM
- * Cons
 - * Requires design modification
 - * Requires a CNC specialist

Manufacturing Option 3 – Injection Molding

- * Compresses thermoplastic using a mold
- * Pros
 - * Complex geometries
 - * Wide range of materials
- * Cons
 - * High initial cost
 - * Plastic parts

Copyright @ 2007 CustomPartNet

http://www.custompartnet.com/wu/images/im/injectionMolding_machine_overview.png

Design Matrix

Design Aspects	Photolithography	CNC Milling	Injection Molding
Aesthetics (10)	7	9	8
Accuracy (25)	23	21	20
Part Durability (15)	9	14	13
Cost (15)	13	8	5
Functionality (25)	17	24	22
Availability (10)	9	9	8
Total (100)	78	85	76

Semester Goals

- * Many improvements still needed...
 - * Standard Braille spacing
 - * Manufacture accurate and durable
 - parts Tosa Tool
 - * Functional product

http://www.orientalwatchsite.com/choosing-the-right-watchesmovements-affects-quality-and-lifespan/

Acknowledgments

- * Holly and Colton Albrecht
- * John Puccinelli
- Past Braille Watch Design Teams
- * Biomedical Engineering Department

References

- * http://www.pharmabraille.co.uk/braille-alphabet.html
- * http://watchluxus.com/braille-watches-by-auguste-reymond
- * http://www.tuvie.com/haptica-braille-watch-concept/
- * http://www.custompartnet.com/wu/images/im/injectionMolding_machine_overview.pn g
- * http://www.labvolt.com/uploads/products/full/5600-cnc-millnew.jpg
- * http://cnx.org/content/m1037/latest/5.15.png
- * http://www.orientalwatchsite.com/choosing-the-right-watches-movements-affects-quality-and-lifespan/