Developing a 3D model of the tongue and mouth to assess pressure generation in predict bolus flow when swallowing

Project Design Specifications

Marie Greuel (Team Leader), Tyler Lieberthal (Communicator), Kelly Hannenken (BWIG), Denise Wong (BSAC)

Function: JoAnne Robbins, Ph.D., Director of the UW/VA Swallowing Speech and Dining Enhancement Program (SWAL-ADE) will supervise this project concerning dysphagia, or difficulty swallowing, which affects many adults and children in the U.S. It often is a result of stroke or degenerative neurologic disease. This project will focus on developing a 3D model of the tongue and mouth that will be used to assess pressure generation within the oral cavity during swallowing. This is a third semester project, and we will concentrate on enhancing the tongue posterior movement, designing a mouth cavity compatible with pressure sensors (MOST device), and programming the device to simulate different disorders via tongue movement.

Client requirements: Our client requires a model that fulfills these requirements:

- Develop mouth cavity with a hard palate compatible with force sensors (MOST device)
- Programmed tongue movements that simulate various forms of dysphagia
- Posterior tongue movement

Design requirements:

1. Physical and Operational Characteristics

a. *Performance requirements*: The device should be able to have full tongue movement (posterior/anterior) and be compatible with sensors that are able to detect a range of pressures (MOST device).

b. *Safety*: This model would not be in direct contact with patients; therefore, typical medically ethical issues do not need to be considered. However, the model's electrical components should be contained as to not harm the operator.

c. *Accuracy and Reliability*: Our model should mirror the physiology and anatomy of healthy and unhealthy swallowing mechanisms found in humans as accurately as possible.

d. *Life in Service*: Our model is expected to last indefinitely, with continual updates to electrical components as technology advances.

e. *Shelf Life*: Our model will need to be stable on a flat surface and portable.

f. *Operating Environment*: The model should be able to maintain structural integrity when handled and if dropped.

g. *Ergonomics*: Our model is not a hand-held device and so ergonomics does not apply directly.

h. *Size*: Model should be consistent with typical human size. Mouth cavity: ~15 cm x ~15 cm.

i. Weight: Model (including electronics) should not exceed 4.5 kg.

j. *Materials*: Tongue is currently made of silicone. Hard palate in front of jaw should be constructed using a hard plastic; soft palate should be constructed out of silicone.

k. *Aesthetics, Appearance, and Finish*: Model should accurately represent the appearance of a human mouth.

2. Production Characteristics

a. *Quantity*: At least one functional prototype is needed. Design should be conscious of possible replication.

b. Target Product Cost: Device costs should not exceed 500 dollars.

3. Miscellaneous

a. *Standards and Specifications*: Model will not be in direct contact with patient; only basic safety specifications will be considered.

b. *Customer*: Functionality is a priority to the client.

c. *Competition*: Currently there are no devices that model the swallowing mechanisms of dysphagia. There is one current non-electrical model that demonstrates the mechanisms of swallowing for nurse education (Miss-Swallowing simulator).