Model of Pediatric Supracondylar Humerus Fracture

Liam Granlund, Maïsha Kasole, Laura Robinson, Micaiah Severe, Megan Baier

Client: Dr. Pamela Lang, MD, UW-Health, Department of Orthopedics and Rehabilitation
Advisor: Dr. Ben Cox, PhD, UW-Madison, Department of Biomedical Engineering

Abstract

The supracondylar humerus fracture is a common elbow fracture in children. There is a need to practice “Closed Reduction and Percutaneous Pinning,” which is the appropriate procedure for this fracture. The team created a teaching model for this complex procedure by modifying off-the-shelf models. The bone was fractured, holes for pinning were pre-drilled, the envelope was shaved down, and a patch was placed to obscure the holes. To test the model, the team received qualitative evaluations of the simulation from orthopedic residents. Overall the model is a good first prototype, but requires future work to make it more reusable and realistic.

Background and Motivation

Background
- In children the supracondylar area is predisposed to fracture [2]
- The common way to fix Type II & III fractures is the surgical method of closed reduction and percutaneous pinning (CRPP)[3]

Motivation
- Supracondylar humerus fractures represent 18% of all pediatric fractures [1]
- Residents need a realistic and reusable model to practice the CRPP surgery

Design Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functionality</td>
<td>Anatomically accurate</td>
</tr>
<tr>
<td>Reusability</td>
<td>Maintains functionality up to 5 years</td>
</tr>
<tr>
<td>Appearance</td>
<td>Looks realistic</td>
</tr>
<tr>
<td>Ease of Fabrication</td>
<td>Methods are doable under time constraints</td>
</tr>
<tr>
<td>Materials</td>
<td>Easily accessible</td>
</tr>
<tr>
<td>Cost</td>
<td>Within $250 budget</td>
</tr>
<tr>
<td>Safety</td>
<td>Non-flammable</td>
</tr>
</tbody>
</table>

Fabrication & Development

Materials
- Sawbones pediatric humerus model: Strong, radiopaque
- Sawbones pediatric tissue envelope
- Band-aid*: cheap, replaceable patching method to cover the drilling site
 *The team also considered using putty

Methods
- Fracturing the bone
- Coping Saw was used for accurate ridge formation
- Drilling pilot holes for proper pin placement
- Cutting patch in the envelope for proper assessment of skill
- Shaving of material in envelope to give model more realistic feel

Design Achievements:
- Excellent fluoroscopic visibility
- Great functionality of bone
- Good teaching method for closed reduction
- Low-cost and reusable

Design Evaluation:
- Senior medical staff were more generous in their scoring of the model
- The client is overall satisfied with this first prototype

Discussion

Model Issues:
- Rubber peristeme was too weak
- Elbow joint was too stiff
- Foam was too thick
- Fracture location was too high

Future Work

Tissue Envelope
- Utilize self healing material for patch site
- Increase flexibility of the elbow joint and add neurovascular anatomical details

Bone
- Add sensor in model to prevent damage to the bone
- Move fracture site proximal to the elbow

Design Process
- Increase sample size and duration of testing
- Consider 3D printing options

Acknowledgements

The team would like to thank our advisor, Dr. Ben Cox, and our client, Dr. Pamela Lang for their advice and support. The team would also like to acknowledge the TEAMLab and Sawbones for their contribution to the project.

References