

#### Microfluidic Cell Sorter

#### Advisor: Professor Justin Williams

Client: Skala Lab - Melissa Skala, Emmanuel Contreras Guzman

Team: Josh Zembles, Sara Wagers, Caleb Heerts, Hunter Hefti



#### Abstract

- Current microfluidic chips move cells too fast past the detector
  - Goal is to design a microfluidic plate that will sufficiently slow cells down
  - Need to consistently hold an x, y, z location for cells
- Two designs selected for additional testing
  - Funnel Design
  - Inertial Ordering (AKA Snake Design)
- Flow simulations utilizing SolidWorks
- Results:
  - Funnel shows promise, further experimentation needed
  - Snake design hiccups, little control over centering cells
- Future:
  - Alterations to designs
  - Prototyping



## **Client Background**

- Dr. Melissa Skala
  - Department of Biomedical Engineering
  - Morgridge Institute for Research
- Emmanuel Contreras
  - Morgridge Institute for Research





Current devices move cells too quickly to be analyzed



## **Background - Cell Sorting**

- Process of separating cells by size or type for further analysis
- Usually accomplished via an innate system of size identification or via labelling/tagging
- Often important as a source of cell identification and for stem cell research





## Design Criteria

- Sufficiently slow cells down (Flow speed of ~1 mm/s)
  - 100's of ms over detector
- Single-file cell flow through interrogation window
- Cells held in a fixed x, y, z location
- Flow in PBS (Phosphate-Buffered Saline)
- Flow cell has to fit the microscope stage insert
- Bottom side of the flow cell would need to have ~150 micron glass thickness and accommodate the ~1 inch wide objective lens with a working distance of 0.2 mm.



#### **Background - Previous Designs**



Flow Cytometry fluidics<sup>5</sup>



Clients initial design

- Uses sheath flow to center cells
- Same methods used in Flow Cytometry



- Currently too fast
- Too crowded to read each cell individually
- Created bubbles in the line

#### Funnel Concept and Design

- Based on previous in-lab designs
- 3D cone-shaped cellular inlet
- Allows sheath flow to surround cell injection site
- Cell centering is more consistent







#### **Funnel Results**

#### Flow Trajectory

#### Particle Tracker







### **Funnel Testing and Results**

- Velocity of the fluid in the channel at different Sheath Flow speeds
- During testing it was found that the inlet velocity of the cells had no significant effect on the velocity of fluid in channel

| Velocity (Cells) [mm/s]        |                                                                                            | 0.1  | 0.55 | 1     | 0.1   | 0.55  | 1     | 0.1  | 0.55 | 1   |
|--------------------------------|--------------------------------------------------------------------------------------------|------|------|-------|-------|-------|-------|------|------|-----|
| Velocity (Sheath Flow) [mm/s]  |                                                                                            | 0.01 | 0.01 | 0.01  | 0.055 | 0.055 | 0.055 | 0.1  | 0.1  | 0.1 |
| Velocity in the channel [mm/s] |                                                                                            | 1    | 1    | 1     | 7     | 7     | 7     | 13   | 13   | 13  |
|                                | Velocity (Cells) [mm/s]<br>Velocity (Sheath Flow) [mm/s]<br>Velocity in the channel [mm/s] |      |      | 0.1   | 0.1   | 0.1   | 0.1   | 0.1  |      |     |
|                                |                                                                                            |      |      | 0.001 | 0.005 | 0.01  | 0.015 | 0.02 |      |     |
|                                |                                                                                            |      |      | 0.148 | 0.656 | 1     | 2     | 3    |      |     |



### Snake Concept and Design

- Initial discovery
- Inertial Ordering
  - Centering cells using properties of fluid motion
  - Focuses laterally
- Variability
  - Different papers, different designs
- Symmetry
  - Symmetrical curvature vs asymmetrical

D. D. Carlo, D. Irimia, R. G. Tompkins, and M. Toner, "Continuous inertial focusing, ordering, and separation of particles in microchannels," *Proceedings of the National Academy of Sciences*, vol. 104, no. 48, pp. 18892–18897, 2007.





#### **Snake Testing and Results**

- Sheath fluid?
- Technical issues
- Multiple iterations
- Fluid simulation testing
  - Comsol vs SolidWorks
    - Technical issues
- Particle simulations

- Flow simulation reveals faster flow at center
- Particle simulation gives mixed results
  - Mostly appears to be little or no centering



#### **Snake Results**











#### Mathematical Considerations

- **Reynolds** Number
  - Ratio of inertial to viscous forces
  - Channel Reynolds Number (R<sub>c</sub>)

$$R_{\rm c} = \frac{U_{\rm m}D_{\rm h}}{\nu}$$

• Particle Reynolds Number (R<sub>n</sub>)

$$R_{\rm p} = R_{\rm c} \frac{a^2}{D_{\rm h}^2} = \frac{U_{\rm m}a^2}{\nu D_{\rm h}}.$$

- Dean Number
  - $De = Re(D_{h}/2r)^{\frac{1}{2}}$
  - Describes the relationship between viscous and centrifugal forces in a curved channel



#### Future Work

- Optimize dimensions
- Create turbulence-free connection
- Fabricate prototypes in the Morgridge Center Fab Lab
- Test the designs with polystyrene beads
- Decide on one final design
- Conduct thorough efficacy testing with cells



## Acknowledgements

- Professor Justin Williams
- Skala Lab members: Melissa Skala, Emmanuel Contreras, Kayvan Samimi, and Andrea Schiefelbein



#### References

- 1. <u>https://www.123rf.com/photo\_42600647\_stock-vector-a-cartoon-illustration-of-a-white-blood-cell-looking-surprised-.html</u>
- 2. <u>https://www.howtosmile.org/resource/smile-000-000-002-937</u>
- 3. <u>https://on-chipbio.com/product-onchip\_sort/</u>
- 4. <u>https://www.microfluidic-chipshop.com/catalogue/microfluidic-chips/glass-chips/straight-channel-chips-glass/</u>
- 5. <u>https://www.mybiosource.com/learn/testing-procedures/flow-cytometery/</u>
- 6. "Ratchets in hydrodynamic flow: more than waterwheels | Interface Focus."

https://royalsocietypublishing-org.ezproxy.library.wisc.edu/doi/full/10.1098/rsfs.2014.0054#d3e602 (accessed Oct. 01, 2020).

- 7. <u>https://www.researchgate.net/figure/Shown-here-is-the-basic-structure-of-a-typical-flow-cell-Sheath-fluid-flows-through-a\_fig1\_23</u> 0745384
- 8. "Continuous inertial focusing, ordering, and separation of particles in microchannels" https://www.pnas.org/content/pnas/104/48/18892.full.pdf



## Questions / Comments?



#### **Background - Competing Designs**





Microfluidic Cell sorter: On-chip Sort<sup>3</sup>

- Cell sorting and Flow Cytometers
- Expensive
- All-in-one device
- Unable to detect decay time which is not standard



Microfluidic ChipShop<sup>4</sup>

- A straight channel chip from Microfluidic ChipShop
- Cells are not focused



# Design 1: Plinko

- Cell centering through seemingly random motion
- Allows for relatively precise cell centering
- Potential to slow flow down by widening channel



Sturm et al., Interface Focus, 2014;4(6):20140054. doi:10.1098/rsfs.2014.0054.



# Design 2 - Funnel

- Based on previous in-lab designs
- 3D cone-shaped cellular inlet
- Allows sheath flow to surround cell injection site
- Cell centering is more consistent



 $https://www.researchgate.net/figure/Shown-here-is-the-basic-structure-of-a-typical-flow-cell-Sheath-fluid-flows-through-a_fig1_230745384$ 



# Design 3 - Snake

- Relies on properties of entry and diffusion
- Cells laterally focus
  themselves
- Potential to reduce flow via outlets



https://www.pnas.org/content/pnas/104/48/18892.full.pdf



21

#### Design Matrix

| Design Criteria            |     | Plinko |     | Funnel | Snake |    |  |
|----------------------------|-----|--------|-----|--------|-------|----|--|
|                            |     |        |     |        |       |    |  |
| Speed Reduction (25)       | 5/5 | 25     | 3/5 | 15     | 4/5   | 20 |  |
| Positioning (25)           | 3/5 | 15     | 3/5 | 15     | 4/5   | 20 |  |
| Ease of Fabrication (20)   | 3/5 | 12     | 5/5 | 20     | 4/5   | 16 |  |
| Reusability/Sterility (15) | 4/5 | 12     | 5/5 | 15     | 5/5   | 15 |  |
| Manufacturing Cost (10)    | 5/5 | 10     | 5/5 | 10     | 5/5   | 10 |  |
| Safety (5)                 | 5/5 | 5      | 5/5 | 5      | 5/5   | 5  |  |
| Total (100)                | 79  |        |     | 80     | 86    |    |  |

