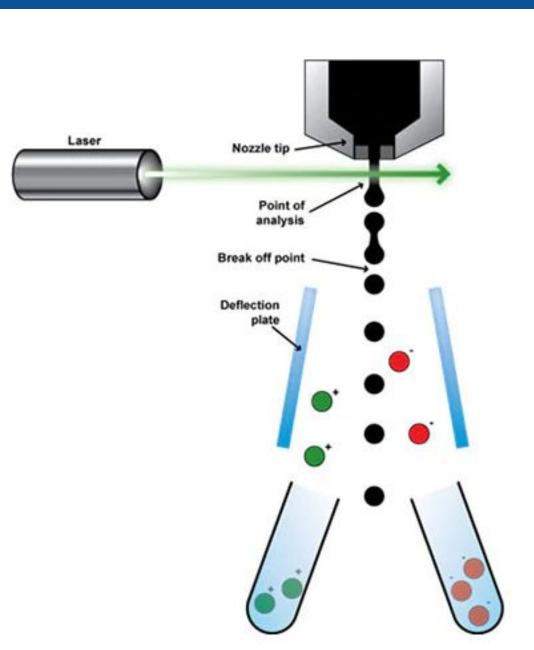


ABSTRACT

- Current microfluidic chips move cells too fast past the detector • Goal is to design a microfluidic plate that will sufficiently
 - slow cells down
- \circ Need to consistently hold an x, y, z location for cells
- Two designs selected for additional testing
- Funnel Design
- Inertial Ordering (AKA Snake Design)
- Flow simulations utilizing SolidWorks
- Results:
- Funnel shows promise, further experimentation needed
- Snake design hiccups, little control over centering cells • Future:
- Alterations to designs
- Prototyping


BACKGROUND

Skala Lab

- Run by Dr Melissa Skala
- Research focuses on studying cancer via photonics-based technology
- Developed new cell sorting tech with aid of the Morgridge Institute

Cell Sorting

- Process of separating cells by size or type for further analysis
- Usually accomplished via an innate system of size identification or via
- labelling/tagging • Often important as a source of cell identification and for stem cell research

Figure 1. Fluorescence Activated Cell Sorting (FACS)¹.

DESIGN CRITERIA

- Sufficiently slow cells down (Flow speed of $\sim 1 \text{ mm/s}$)
- Should allow for 100's of ms integration time on the detector
- Single-file cell flow through interrogation window
- Flow in PBS (Phosphate-Buffered Saline)
- Cells held in a fixed x, y, z location

- Flow cell has to fit the microscope stage insert
- Bottom side of the flow cell would need to have ~150 micron glass thickness and accommodate the ~ 1 inch wide objective lens with a working distance of 0.2 mm.

Microfluidic Cell Sorter

TEAM: CALEB HEERTS, SARA WAGERS, JOSH ZEMBLES, HUNTER HEFTI CLIENT: SKALA LAB, DR. MELISSA SKALA AND EMMANUEL CONTRERAS **Advisor: Dr. Justin Williams**

FINAL DESIGNS

Funnel Design

- Based on previous in-lab designs
- 3D cone-shaped cellular inlet
- Allows sheath flow to surround cell injection site
- Cell centering is more consistent

Figure 2. A sample prototype for a Funnel Design with Sheath Flow.

Inertial Focusing

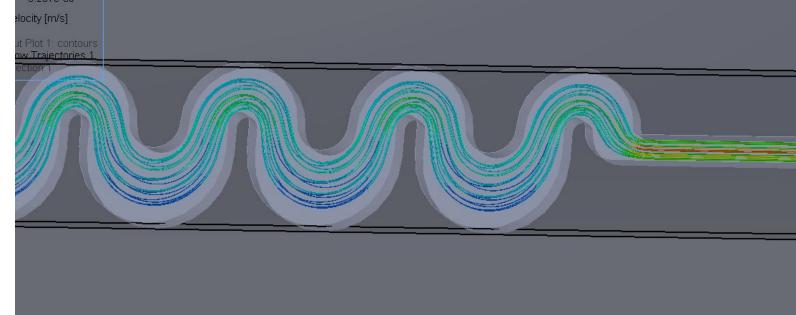
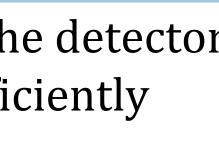
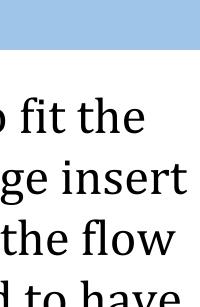
- Cells laterally focus themselves
- Potential to reduce flow via outlets
- The sum of inertial lift forces encourages cells to line up as they take the path of least resistance

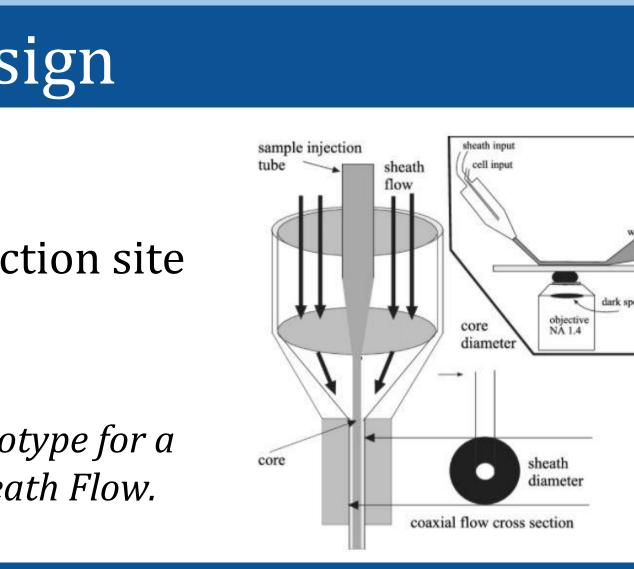
TESTING AND RESULTS

Flow Simulation

- Models generated via SolidWorks
- Basic flow simulation with static pressure at the outlet
- Results in faster fluid velocity as fluid gets confined in funnel • Radius of fluid stream containing cells is reduced

854e-01 378e-01 903e-01 427e-01 951e-01 476e-01


Figure 4. Flow simulation of Flow Trajectories for Funnel design.

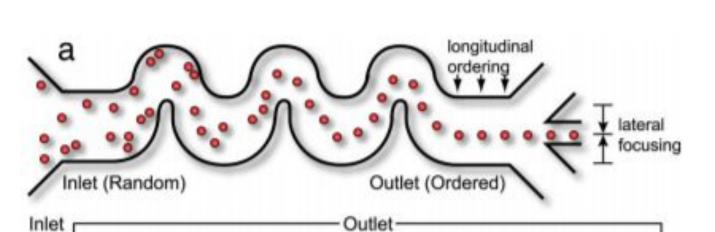
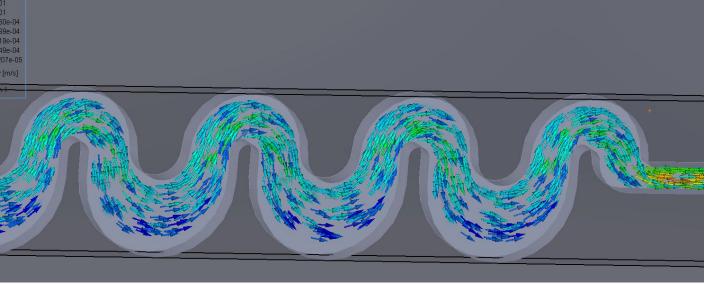

Parti	cle Tra
• Particle simulation utilizing	• Pa
particle size of 10 μm	pa
Results in centering within	cł
channel	• D
2 2 1 1	0 000 0 001 0 001 0 001 8 3600 4 019 1 849 1 849

Figure 6. Flow simulation of Particle Tracker for Funnel design.

Figure 3. A sample prototype for an inertial channel.²


• Inlet speed of snake run at 0.05m/s • Results in more speed near the center of the channel • Appears to work well asymmetrically

> Figure 5. Flow simulation of Flow Trajectories for Snake design.

acing

Particle simulation utilizing particle size of 10 μm in 50 μm hannel

Does not seem to result in bvious centering

Figure 7. Flow simulation of Particle Tracker for Snake design.

• Dean Number

$$De = Re(I)$$

• Reynolds Number

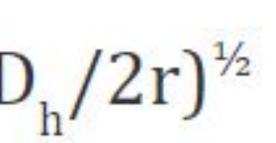
$$R_{\rm e} = \frac{U_{\rm m}D}{\nu}$$

Velocity (Cells) [mm/s] Velocity (Sheath Flow) [mi Velocity in the channel [m

Velocity (Cells) [mm/s] Velocity (Sheath Flow) [mr Velocity in the channel [mr

• Optimize dimensions

- Decide on one final design


ACKNOWLEDGEMENTS

- Dr Melissa Skala
- Emmanuel Contreras
- Kayvan Samimi

[1] D. D. Carlo, D. Irimia, R. G. Tompkins, and M. Toner, "Continuous inertial focusing, ordering, and separation of particles in microchannels," PNAS, vol. 104, no. 48, pp. 18892–18897, Nov. 2007, doi: 10.1073/pnas.0704958104. [2] "facs-live-cells1.jpg 472×500 pixels." https://a.static-abcam.com/CmsMedia/Media/facs-live-cells1 (accessed Dec. 04, 2020).

RESULTS CONT'D

Mathematical Considerations

Figure 8. Dean Number describes the ratio of viscous and centrifugal forces in a curved channel.

-

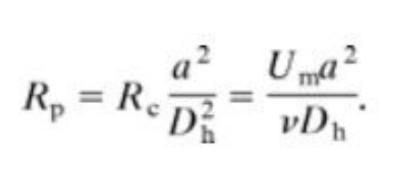


Figure 9. Channel and Particle Reynolds number. These values predict if particles move by inertial lift or viscous forces.

Velocity Profiles for Funnel

• Velocity of the fluid in the channel at different Sheath Flow speeds • During testing it was found that the inlet velocity of the cells had no significant effect on the velocity of fluid in channel

	0.1	0.1	0.1	0.1	0.	······	Figure 10: Table of final velocities in the channel that correspond to		
nm/s]	0.001	0.005	0.01	0.015	0.0				
nm/s]	0.148	0.656	1	2		3 <i>the</i>	the variety of inlet velocities		
	·								
	0.1	1	0.1	1	1	0.1	1		
nm/s]	0.01	0.01	0.05	5 0.0	55	0.1	0.1		
nm/s]	1	1	-	7	7	13	13		

FUTURE WORK

• Create turbulence-free connection

• Fabricate prototypes in the Morgridge Center Fab Lab

• Test the designs with polystyrene beads

• Conduct thorough efficacy testing with cells

• Andrea Schiefelbein

• Dr. Justin Williams

REFERENCES