

X-Chair: Autonomous Wheelchair Restraint Adaptations

Client: Mr. Keith Wanta Team Members: Marissa Harkness, Ben Lawonn, Jonathon Murphy, Naman Patel, Jenna Warden Advisor: Mitchell Tyler

Overview of Presentation

- Problem Statement
- Background Material
- Product Design Specifications
- Final Design
- Code Flowchart
- Discussion

- Future Work
- Acknowledgments & References

Client Information

- Mr. Keith Wanta
 - Works as a Senior Programmer Analyst in • the Biostatistics and Medical Informatics Department at the UW-Madison School of Medicine and Public Health
 - **Diagnosed with Spinal Muscular Atrophy** ٠ (SMA) Type 2

Problem Statement

- Client is unable to safely enter and operate standing wheelchair
- Movement has many benefits blood flow, digestion, bone health, which are less obtainable when mobility is restricted
- Existing standing wheelchair supports enable mobility but lack autonomous accessibility
- CNA and licenced physical therapists can facilitate productive device usage but are too costly

Background

What is Spinal Muscular Atrophy (SMA) [1]

• Impacts voluntary movement of muscles

Benefits of being in upright position vs sitting [1]

- Increased blood flow
- Stretching and exercising muscles
- Current Problems in standing wheelchair supports
 - Difficult to secure in place
 - Requires help during entry and exit

Product Design Specifications

Client requirements:

- Motorized, accessible controls for individual device operation
- Secure user in the standing position
- Cannot impede entry to wheelchair via ceiling lift
- Must be removable from wheelchair

Design requirements:

- Chest support obtains position with 100% accuracy
- Leg support obtains position with 100% accuracy
- Functionally effective over duration of 8 hours
- Supports must enter position within 30 second period

Final Design - Chest Support

- Overhead bar
 - Moved via worm gear
 - Locked via ratchet system
- Worm gear
 - Driven by 360° servo motor
 - Provides torque increase and prevents backdrive
- Ratchet system
 - Lock controlled with 180° servo motor
 - Ensures dynamic system stability

Final Design - Chest Support Videos

department of Biomedical Engineering UNIVERSITY OF WISCONSIN-MADISON

Final Design - Leg Support

- Support arm (pinion)
 - Adjustable pad positioning
- Threaded bolt (rack)
 - Threading/unthreading of bolt changes support arm positioning
 - Secures support arm during operation
- Gear system

- Driven by 360° servo motor (0.3 N·m)
- Threaded bolt turned by gear stock

Final Design - Leg Support Videos

Code Flowchart

Discussion

- Potential problematic areas
 - Friction at the pin in the leg support
 - Shearing of pinion teeth in rack and pinion system
 - Potential backdrive of chest support bar
- Calculations
 - Calculate torque needed for the motors
 - Mechanical stress at specific points
 - Factor of safety of 2 accounted for mechanical stresses
- Testing various metrics to determine functionality

Testing Plan

- Nucleo Code Functionality Testing
 - Tests proper execution of movement code •
 - 100% Accuracy •
- Nucleo Code Execution Time Testing
 - Tests the execution duration of code
 - Measures if the movement time is within parameters •
 - 95% Accuracy
- Limit Switch Failsafe Test
 - Tests limit switch performance as mechanical failsafe
 - 100% Accuracy

[2]

Future Work

- Fabrication
 - Component outsourcing
 - TeamLabs Welding Pass
 - Device assembly
- Conduct mechanical stress testing to determine possible points of failure
- Install a secondary safety measure to ensure no accidental usage of the device
- Foot plate design and fabrication

Acknowledgments

A special thanks to.....

- Our Client: Mr. Keith Wanta
- Our Advisor: Mr. Mitch Tyler
- BME Director: Dr. John Puccinelli
- BME Department

Questions???

References

[1] Mda.org. 2020. [online] Available at: https://www.mda.org/sites/default/files/publications/Facts_SMA_P-181.pdf [Accessed 6 September 2020].

[2] Mouser Electronics. 2020. NUCLEO-F303K8. [online] Available at:

<https://www.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-F303K8?qs=kWQV1gtkNndPxYr6NNfTBw%3D%3D&g clid=CjwKCAiA8Jf-BRB-EiwAWDtEGsJaRIBJv0FdSwO2a3QgXPAEOTRrq5cv__I2FXOyGTACk54rjon_rBoCoZoQAvD_BwE> [Accessed 2 December 2020].

[3] Digi-Key Electronics. 2020. SS-3GLP. [online] Available at:

<https://www.digikey.com/en/products/detail/omron-electronics-inc-emc-div/SS-3GLP/664725?utm_adgroup=Switches&utm_s ource=google&utm_medium=cpc&utm_campaign=Dynamic%20Search&utm_term=&utm_content=Switches&gclid=CjwKCAiA 8Jf-BRB-EiwAWDtEGv-V_jmsXK9r1wm4YvXYh86IL7uMP97eQ7sVNdvbRSrWAQZOVxU5DxoCSqMQAvD_BwE> [Accessed 2 December 2020].

[4] College of Engineering - University of Wisconsin-Madison. 2020. Hands-On Projects Help Students Learn Shop Skills At TEAM Lab Workshops - College Of Engineering - University Of Wisconsin-Madison. [online] Available at: https://www.engr.wisc.edu/news/hands-projects-help-students-learn-shop-skills-team-lab-workshops/ [Accessed 2 December 2020].

