

Johnson Health Tech: EMG Sensor Holder Cassie Geddes, Quinton Heney, Emily Johnson,

Ian Schirtzinger, Kiley Smith

Client: Arrington Pollman & Staci Quam Advisor: John Puccinelli Date: 10/02/20

Problem Statement

Johnson Health Tech uses Delsys Trigno[™] EMG and Accelerometer sensors to measure acceleration and center of mass Their current method of an athletic tape wrap cause the sensors to slip and possibly alter the runner's gait Tape can bunch up and become burdensome Create two sets of sensor holders

Background Material

- The Delsys Trigno sensors are used by Johnson Health tech to determine forces on and velocities of body segments
 Data analysis is done in MATLAB to determine ground reaction force (heel) and total body movement measurements like step rate (chest)
- Sensors can also be put at other areas of interest like the tibia or head

Competing Designs

 Strap system for 6-axis Motion Smart Sensor by Playermaker [1]

 3D acceleration sensor that strapped on ankle using elastic fleece strap and a cuff (US7912672B2) [2]

Heart Rate Sensor by Polar

Product Design Specifications

Two sets of sensor holders I chest strap and 2 shoe straps per set Compatible with women's size 6 to men's size 12 running shoes and chest circumferences of 32in-46in [3] Withstand around 2.28 kN to 2.64 kN of force [3][4] Minimal alteration to user's gait/movement and < 0.10in displacement of sensor relative to the user's shoe/chest

Chest Holder- Design One

The Fanny Pack

Fanny Pack

- Small Polyester Spandex Pocket
- Comfort from Singular
 Strap

Disadvantages

- Deformation in the Pocket
- Possible Vertical Movement

Chest Holder- Design Two

The Mounted Harness

Mounted Harness

- Multiple Adjusters
- Secure Vertically and
 - Horizontally

Disadvantages

- Discomfort around the Neck
- Excess Material for

Smaller Users

Chest Holder- Design Three

Lederhosen

Lederhosen

- Vertical Sensor
 Adjustment
- Stabilization

Disadvantages

- Maintaining Waistband
 Position
- One Size for Vertical Length
- Leather Material

Design One

The Clip

The Clip

- Lightweight
- Minimally cumbersome
- "One-size-fits-all"

Cons
- Stability uncertain
- Longevity

Design Two

The Straps

The Straps

Sensor View

Pros - Adjustable straps - Lightweight

Cons

- Requires two laces loops
- Stability uncertain

Design Three

The Goal Post

The Goal Post

Pros

Minimally cumbersome
 Likely stable

Cons

 Not compatible for multiple shoe sizes

Design Matrix (Chest Strap)

		The Fanny Pack		The Mounted Harness		Lederhosen	
	Weight	Score Out of 5	Weighted Score	Score Out of 5	Weighted Score	Score Out of 5	Weighted Score
Predicted							
Stability	25	3.5	17.5	4.5	22.5	4.5	22.5
Comfort	20	4.5	18	4	16	3.5	14
Lack of							
Hinderance	20	5	20	3.5	14	3.5	14
Ease of							
Fabrication	15	5	15	4	12	2.5	7.5
Cost	10	4.5	9	4.5	9	3.5	7
Ease of Use	10	5	10	4.5	9	3	6
Total			89.5		82.5		71

18

Design Matrix (Shoe Holder)

		The Clip		The Straps		The Goal Post	
	Weight	Score Out of 5	Weighted Score	Score Out of 5	Weighted Score	Score Out of 5	Weighted Score
Predicted							
Stability	20	4	16	2.5	10	1	4
Comfort	15	2.5	7.5	3.5	10.5	5	15
Lack of							
Hinderance	15	4	12	4	12	4.5	13.5
Ease of							
Fabrication	12.5	3.5	8.75	4	10	4	10
Safety	12.5	4	10	3	7.5	4.5	11.25
Cost	10	2	4	4.5	9	4.5	9
Ease of Use	10	4.5	9	3	6	3	6
Total			67.25		65		68.75

19

Future Work

- Fabricate all designs
- Collect force and acceleration data using current methods
- Collect force and acceleration data using new designs
- Compare data to see
 - improvements
- Pick most stable design
- Improve best design

References

[1] Playermaker, "Play Smart. Connect Your Game.," Playermaker. [Online]. Available: https://playermaker.com/#:~:text=Playermaker%20is%20the%20game%20changer,on%20team%20and%20player%20perform ance. [Accessed: 17-Sep-2020].

[2] Method and Device for Evaluating Displacement Signals, by R. Feichtinger and J. Löschinger. (2011, Mar. 22). Patent US 7912672B2. Accessed on: Sept. 17, 202. [Online]. Available: Google Patents.

[3] C.D. Fryar, M.S.P.H., D. Kruszon-Moran, Sc.M., Q. Gu, M.D., and C.L. Odgen, Ph.D., "Mean Body Weight, Height, Waist Circumference, and Body Mass Index Among Adults: United States, 1999-2000 Through 2015-2016," CDC, United States, Rep. 122, 2018.

[4] "Biomechanical Differences Between Different Foot Strikes," Harvard University, Cambridge, MA, United States.