Low-Cost Motorized Microscope Stage

Client: Dr. John Puccinelli, Ph. D.

Team Members: Jacob Cohn (BPAG), Dylan von Heimburg (BWIG), Sam Schini (Communicator), Riley Pieper (Team Leader), Noah Trapp (BSAC)

Advisor: Paul Campagnola, Ph. D.

Overview

- Problem Statement
- Background
- Product Design Specifications
- Design Alternatives
- Design Matrix
- Future work
- References

Problem Statement

Initial reported problem:

- New BME Teaching Lab
 - 2 existing microscopes
- Motorized microscope stages are extremely expensive (thousands of dollars)
- The ability to automate is appealing
 - Image consistency
 - Time efficiency

Goal:

 Design a stage or stage modification that allows for motorized process that can be automated

(Nikon commercial motorized-stage microscope set up)

Background

- Industrial systems exist
 - Prior, ASI
- Cell diameter 10s of microns
- Serial Imaging using Micro Manager
- Image stitching in ImageJ

(Open Source Micro-Manager software)

Product Design Specifications Summary

Client Requested Functions:

- Motorized mechanism to move microscope stage
- Used for both the Nikon TI-U Inverted Fluorescence Microscope and Zeiss Axiovert 40 Inverted Microscope
- Use either OpenScan Micro-Manager or NIS-Elements BR software
- Control movement with resolution of 1 micron in x and y direction
- Budget \$100

Design 1: New-Replaceable Stage

- Features:
 - Involves fabricating stage elements in addition to motor circuitry
- Appeal:
 - More precise stage movement
 - Sleek integration
- Major Drawback:
 - Difficulty integrating in place of commercial stage
 - Budget constraints

New stage to replace current microscope stage

Design 2: Removable Gear Cap

- Features:
 - Bevel gears within housing unit
 - Gears remain in unit and slide on/off
- Appeal:
 - Easiest to attach/detach
 - No permanent modifications
- Major Drawback:
 - Difficulty of stabilization and mating

(The housing fixes the gear and motor positions, allowing facile slide-on/off attachment of full cap system)

Design 3: Gear-Fastened Translational Knobs

Features:

- Bevel gears fastened to knobs with removable set screws
- Positioning frame fastened to knob shaft with removable set screws
- Appeal:
 - Secure and consistent gear mating
 - Reasonable fabrication
- Major Drawback:
 - No immediate attachable/detachable feature

Bevel gears and positioning bracket fastened to translational microscope knobs with set screws

Preliminary Design Matrix

			THE		Gear Fastened	
Criteria (weight)	New-Replac Score	ceable Stage Weighted	Removab Score	le Gear Cap Weighted	Translat Score	tional Knobs Weighted
Cost (25)	1/5	5	3/5	15	4/5	20
Functionality (20)	5/5	20	3/5	12	4/5	16
Precision (20)	5/5	20	3/5	12	4/5	16
Fabrication (10)	1/5	2	2/5	4	4/5	8
Ease of Use (10)	5/5	10	4/5	8	3/5	6
Detachment (10)	2/5	4	5/5	10	3/5	6
Safety (5)	3/5	3	5/5	5	5/5	5
TOTAL (100)		64		66		77

Future Work

Acknowledgements

Advisor: Paul Campagnola, Ph. D.

Client: Dr. John Puccinelli, Ph. D.

References

Nikon.com. 2020. Nikon | Healthcare Products & Solutions (Microscope Solutions) | Inverted Microscopes. [online] Available at: https://www.nikon.com/products/microscope-solutions/lineup/inverted/> [Accessed 1 October 2020]

Micro-manager.org. 2020. Micro-Manager. [online] Available at: https://micro-manager.org/wiki/Micro-Manager [Accessed 1 October 2020].

