

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

ABSTRACT

Arterial lines communicate information about cardiovascular health. The team designed a device that simulates multiple arterial waveforms for the purpose of education. This was done using a cam design that created waveforms with some error.

MOTIVATION

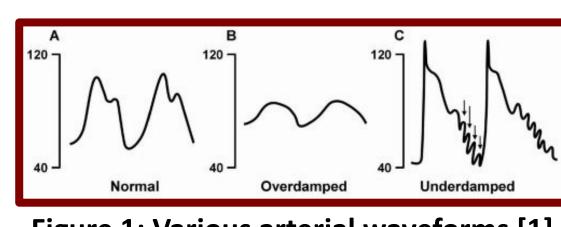
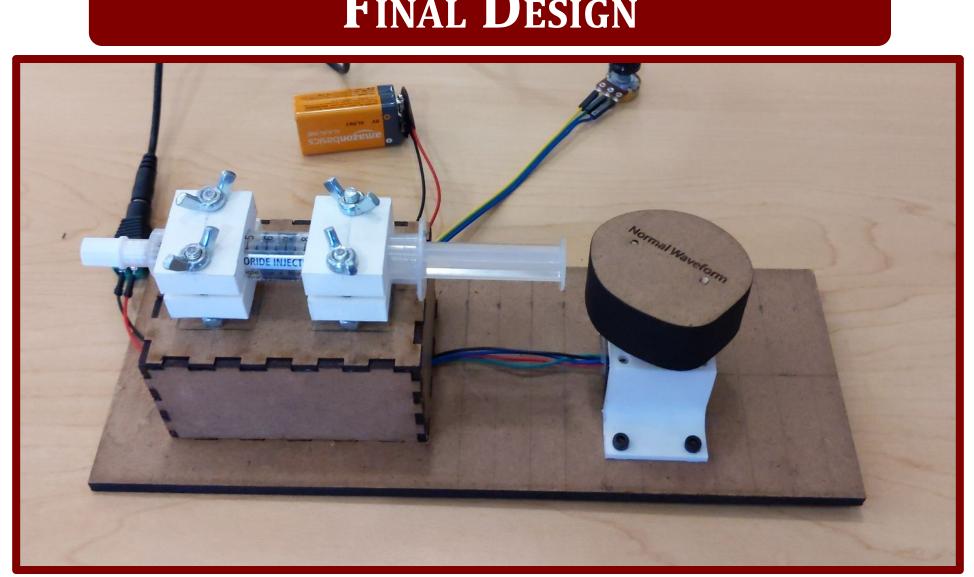
- Important for healthcare providers to receive proper training on how to monitor blood pressure using an arterial line
- Manikins can be expensive for labs that might not be able to afford it
- Manual manipulation of syringe does not produce waveforms of the same accuracy as manikins

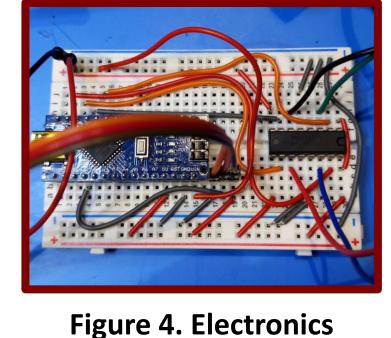
PROBLEM STATEMENT

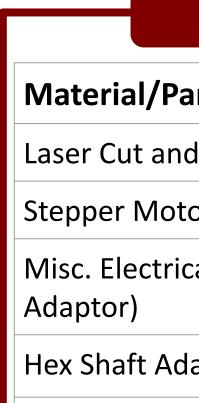
- Want to simulate arterial line waveforms without use of a manikin for teaching purposes in simulation lab
- Current practice is to move the syringe by hand

BACKGROUND RESEARCH

- Arterial line monitoring is an invasive way to measure blood pressure and heart rate
- Used for real time feedback
- Not a lot of available products to practice reading arterial waveforms without the use of expensive manikins
- Three waveforms for blood pressure are normal, overdamped, and underdamped

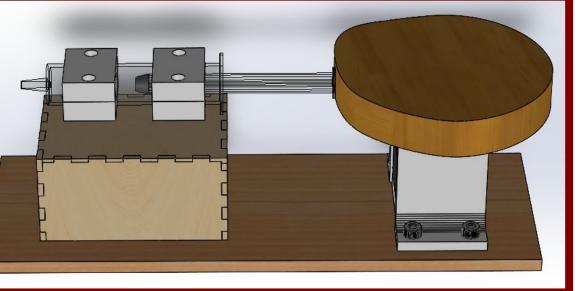

Figure 1: Various arterial waveforms [1]


Design Specifications

- Connect to the arterial line and 10 mL syringe plunger
- Produce an accurate normal arterial pulse waveform
- Minimal user setup
- Size no larger a VHS tape
- Operate for a full instructional period
- Electronics should be covered, use durable materials
- Low cost with a maximum expense of \$1000

- Cam designed specifically to overdamped waveforms

Total


Arterial Line Simulator

Sammie Gilarde, Kasey Mohlke, Riley Norman, Frank Szatkowski, Sophia Finn, Mateo Silver UW **CLIENT: MR. MITCHEL REUTER** FACULTY ADVISOR: DR. MELISSA SKALA BME 200/300, FALL 2021

FINAL DESIGN

• Final design consists of a cam mechanism that presses on the syringe as it rotates. produce normal and

Figure 2. Final Design

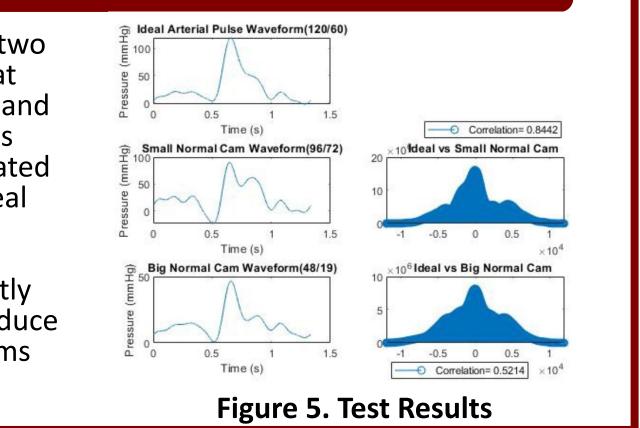
Figure 3. Solidworks Render

- Power provided to the Arduino via a 9 volt battery
- Motor is powered using wall power.
- A potentiometer is used to regulate the speed of the motor. The signal is read in by the Arduino and sent to the motor driver.

MATERIAL COSTS	
Part	Cost
nd 3D Print Material Costs	\$13.55
tor	\$22.50
ical Components (Stepper Driver, Arduino, 12V	\$64.29
daptors, Bolts, Misc. Hardware	\$11.32
	\$111.66

- Run four cams (two per waveform) at variable speeds and syringe distances Compare generated
- waveform to ideal waveform
- Cam shapes will need to be slightly modified to produce proper waveforms

DISCUSSION & FUTURE WORK


- the back edge
- Achieved at medium high speed and stabilizing the base platform to reduce vibrations
- Not enough pressure difference generated, need stronger forces to more accurately replicate the waves
- Main issue was a side force rather than straight in and out • Possible improvements and future work
- Elongate the base platform to support the actual transducer sensor
- Ο
- Ο
- Ο waveforms

We would like to thank our client Mr. Mitchel Reuter and our faculty advisor Dr. Melissa Skala for their time and support.

[1] U. F. O. Themes, "Avoid errors in invasive blood pressure measurement," Anesthesia Key, 01-Jul-2016. [Online]. Available: https://aneskey.com/avoid-errors-in-invasive-blood-pressure-me asurement/. [Accessed: 11-Oct-2021].

TESTING & RESULTS

• Best able to recreate the normal waveform using the smaller normal waveform cam and the box being supported from only

- Add rubber feet in order to reduce vibrations
- Add a hinge to the back side of the box
- Produce a better cam shape for the three different

ACKNOWLEDGEMENTS

REFERENCES