# UM

### ABSTRACT

Major limb loss affected approximately 2.2 million people in the United States in 2020 [1]. Many prosthetic limbs commonly used by these individuals are expensive and difficult to access. e-NABLE is a global community of volunteers that create 3D printed prosthetic hands for individuals in need. The client, tasked the team with modifying the existing *Phoenix Reborn* prosthetic hand to increase the grip of cylindrical objects. The team fabricated a prototype to lengthen the fingers and add a degree of freedom to aid in cylindrical grip. This resulted in greater normal force to the palm of the hand that improved grip. The prototype was tested using a hand dynamometer alongside a series of qualitative tests to compare to the original *Phoenix Reborn*. The results from the testing were analyzed using MATLAB to calculate a p-value of 1.49e-09 showing a statistically significant improvement in the strength of the modified hand.

### **PROBLEM STATEMENT**

### **Design Motivation:**

- Commercially available prosthetic hands are expensive and not economical for families with children who quickly outgrow prosthetics
- Current e-Nable prosthetic designs are limited in the ability and strength of the grip **Objective:**

Redesign the current e-Nable prosthetic to improve user quality of use by increasing the functional capabilities of the prosthetic, while maintaining the cost effectiveness of the manufacturing process

### BACKGROUND



Figure 1. Example of an existing Multi-grip pattern hand [4]



Figure 2. Reborn hand by e-NABLE [5]

### • **Prosthetic Use:**

- From a collection of studies, approximately 34% of prosthetic users use passive prostheses [2]
- Today, both passive and active prosthesis exist: Passive prosthetics posses static and adjustable
  - elements, but lack mechanical function
  - Active prosthetics possess a mechanical function often controlled from flexion of the user
- Current Prosthetics:
- Competing designs such as the DEKA Hand [3], have more capabilities when it comes to grip configurations
- Complex, mechanical designs increase grip versatility and overall abilities, at a higher cost (\$5,000-\$50,000)
- An e-NABLE hand is produced for under \$50
- Societal Impact:
- e-NABLE's global volunteer network provides access to prosthetics that improve the users quality of living. An improved design alternative allows for distribution of a more effective product

### **DESIGN CRITERIA**

- Develop a prosthetic hand that is capable of an improved strength cylindrical grip
- Device must be able to pick up and hold textured and untextured cylinders
- Include a mechanism that limits overexertion of the user while using the prosthetic
- Ensure that the low-cost nature of the initial product is maintained with the prototype
- Possess equivalent or less manufacturing intensity than existing e-NABLE models

# e-NABLE: IMPROVED PROSTHETIC GRIP STRENGTH

Max Wieland, Jaime Barajas

### **Client:** Ken Bice, e-NABLE **Advisor:** Dr. Kip Ludwig, Department of BME and Neurological Surgery

### **FINAL DESIGN**

- **PLA Prototype Components:**
- Phoenix Reborn Hand
- 4 Male-To-Male Phalanx Extensions
- 4 Male-To-Female Phalanx Extensions
- 10 Short Pins
- 2 Long Pins
- Palm Base Plate



. Modified Phalanx Two Figure 3. component



Figure 4. Assembled final hand prototype

### **TESTING AND RESULTS**



Figure 6. Line graph of grip force vs. time by both hands



Figure 7. Box plot to show statistical significance of the difference between grip strength

### **Quantitative Testing:**

- The quantitative testing utilized a hand dynamometer to collect data
- Trials consisted of six contractions of the hand with a hold and rest time of two seconds each
- The data was analyzed in MATLAB
- A two-sided t-test was used to analyze the data
- The mean difference was found to be
- statistically significant, generating a p-value of 1.49e-09

## Team Members: Matt Wroblewski, Kenzie Hurt, Alex Vazquez, Sam Strachan, Shreya Sreedhar,

Date: 12/10/21



component

### **Additional Prototype Components:** • Nylon Thread

- Elastic Cord
- Foam Pad

• Velcro

### **Qualitative Testing:**

- A series of trials were arranged in which objects were picked up to judge performance, providing an analysis of success in everyday tasks
- Varying weights, sizes, and grip aids were used



Figure 8. Histogram of qualitative performance by size



### DISCUSSION

- The new design displayed improvement in grip strength when compared to the original design
- Measures of crush force and versatility were significantly improved
- Both improvements can be attributed to the improved ability of the new design to contour to a cylindrical element - highlighting the importance of the modified phalanx components and the new cable routing procedure • Possible sources of error:
- Slight variability in assembly between configurations in regards to the tension system and retraction system
- Variability in user force input

### **FUTURE WORK**

### **Improvements:**

- Rework the thumb positioning in relation to other fingers to improve grip capability by allowing for productive movements in the gripping action • Integrate a pulley system to leverage principles of mechanical advantage increasing overall grip strength with less user force input
- Redesign the contour of the palm and fingers of the hand to facilitate higher surface area contact with objects

### **Testing:**

- Using a paint or ink on the prosthetic to calculate a hand-object contact surface area to use for pressure distribution/friction calculations for a typical interaction
- Use a system of Force Sensitive Resistors attached to the hand to produce a map of the exerted forces on an object to indicate the versatility and strength of different parts of the hand

### ACKNOWLEDGMENTS

- Kip Ludwig, PhD Department of BME and Neurological Surgery • Christa Wille, DPT, M.S. BME - Department of Biomedical Engineering
- Corinne Henak, PhD Department of Mechanical Engineering • Grace Lee, PhD - Instructor in Physiology, College of L&S
- Ken Bice e-NABLE

### REFERENCES

10.1177/0309364617691622.



• Insufficient grip of original design around the dynamometer

- [1] K. Ziegler-Graham, E. J. MacKenzie, P. L. Ephraim, T. G. Travison, R. Brookmeye. "Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050," Archives of Physical Medicine and Rehabilitation, 2008. vol. 89. [Online] DOI: https://doi.org/10.1016/j.apmr.2007.11.005. [2] B. Matt, G. Smit, D. Plettenburg, & P. Breedveld (2018) "Passive prosthetic hands and tools: A literature review". Prosthetics and orthotics international, vol 42. [Online]. Available: https://doi-org.ezproxy.library.wisc.edu/10.1177/0309364617691622. DOI:
- [3] L. Resnik, F. Acluche, & M. Borgia. (2018). "The DEKA hand: A multifunction prosthetic terminal device-patterns of grip usage at home" Prosthetics and orthotics international, vol. 42(4), 446–454. [Online] DOI: https://doi-org.ezproxy.library.wisc.edu/10.1177/0309364617728117
- [4] P. Wattanasiri, P. Tangpornprasert and C. Virulsri, "Design of Multi-Grip Patterns Prosthetic Hand With Single Actuator," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 6, pp. 1188-1198, June 2018 [Online] doi: 10.1109/TNSRE.2018.2829152.
- [5] enablesierraleone Thingiverse.com, "Reborn hand by enablesierraleone," *Thingiverse*. [Online]. Available: https://www.thingiverse.com/thing:2217431. [Accessed: 23-Sep-2021].