Johnson Health Tech: VO2 Mask for Biomechanics Research

Victoria Heiligenthal (Leader) Rachel Krueger (Communicator) Jakob Knauss (BSAC) Adrienne Rasmussen (BWIG) Tommy Kriewaldt (BWIG) Sinan Ozturk (BPAG)

Advisors: Dr. Kip Ludwig and Dr. James Trevathan Clients: Staci Quam and Grace Johnson

Overview

- Client Description
- Problem Statement
- Background Information
- Project Design Specifications
- Preliminary Designs
 - Clips and Lower Bridge
 - Divot
 - Nose Clip
- Design Matrix
- Future Work
- References

Johnson Health Tech

- Manufactures and develops exercise equipment
- Based out of Cottage Grove, WI
- Utilizes a biomechanics lab to test equipment
- Support and validate claims with research
- Competitor comparison

Figure 1: Johnson Health Tech Logo [1]

Problem Statement

- Objective: Design a mask for measuring volume of oxygen consumption that is compatible with glasses
 - Provides maximum safety and comfort for user
 - Quantitatively prove that the mask produces accurate VO₂ metrics

Figure 2: Current VO₂ Mask Model [2]

Background: VO2 Max Aerobic Testing

- VO₂ max tests are used to determine aerobic fitness of athletes
- Athletes wear a VO2 mask with an intake tube while training
- Measures oxygen usage and consumption
- Johnson Health Tech and other manufacturers have already used and developed VO2 masks that successfully quantitate aerobic capacity
- Athletes with glasses were at a discomfort when wearing the mask

Tommy Kriewaldt

Background: Competing Designs

- VO₂ Master Pro
 - $\circ \qquad {\sf Uses a silicone mask, accurate, battery-powered, portable}$
- CardioCoach
 - Uses a silicone mask, machine-powered, accurate
- K5 Metabolic System
 - Uses a silicone mask, battery-powered, can conduct multiple tests

Figure 5: VO₂ Master Pro Analyzer mask [5]

Figure 4: K5 mask [4]

Figure 6: CardioCoach mask [2]

Product Design Specifications

- Allows subjects to wear glasses during VO₂ testing
- Total cost is below \$400
- Can withstand up to 20 minutes of VO₂ testing
- Is debris resistant (internal/external)
- Can be cleaned between uses
- Is able to perform VO₂ tests accurately

Design 1: Clamps and Lower Bridge

- Nose bridge is lowered an inch to place

 Clamps to Indigenses
- Two clamps added on the sides of the mask to hold glasses from the side
- All other components remain the same as the current mask

Design 2: Divot

- A divot is added on to the top of the mask to place the glasses
- The divot would be an inch by an inch and would not affecting the vision of the user
- All other components remain the same as the current mask

Design 3: Nose Clip

- Separate nose clip to cut off air exchange via the nose
- Mask only covers mouth, so bridge is shortened
- All other components remain the same as the current mask

Figure 10: Design matrix for the three potential designs

Final Proposed Design

- Three clamps to secure glasses
 - Left and right sides to secure frame
 - Middle to secure bridge
- Minimal change in height of nose piece
- All other components remain consistent with existing masks, including materials
- Design is subject to change

Figure 11: Final proposed design sketch

Future Work: Fabrication

- 3D scan of existing masks [6]
 - Modify in SolidWorks
- 3D printing at the Makerspace [7]
 - Materials
- Compatible with tubes and straps used with existing masks

Figure 12: 3D scan of existing VO2 mask

Victoria Heiligenthal

Future Work: Testing

- Testing the design and comparing the results to the current masks used by Johnson Health Tech
- A participant will undergo a VO₂ max test with both masks
 - Following Johnson Health Tech procedures and conditions
- Using testing to show equivalent VO₂ measurements between both

Figures 13 and 14: Subject undergoing VO $_{\rm 2}$ max testing at Johnson Health Tech

Acknowledgements

Dr. Kip Ludwig and Dr. James Trevathan as well as the Johnson Health Tech Team: Grace Johnson and Staci Quam

References

[1] "Johnson Health Tech (@jhtnacareers) / Twitter," *Twitter*. <u>https://twitter.com/jhtnacareers</u> (accessed Oct. 13, 2021).
 [2] J. White, "CardioCoach VO2 Max Testing Equipment - KORR Medical Technologies," Aug. 23, 2013.

https://korr.com/products/vo2-max-testing-system/ (accessed Oct. 14, 2021).

[3] "VO2 MAX Testing." https://vglabs.com/performance-testing-services/vo2-max-testing (accessed Oct. 14, 2021).

[4] "COSMED - K5: Wearable Metabolic System for both laboratory and field testing."

https://www.cosmed.com/en/products/cardio-pulmonary-exercise-test/k5 (accessed Oct. 14, 2021).

[5] "VO2 Master Analyzer | VO2 Master." https://vo2master.com/analyzer/ (accessed Oct. 14, 2021)

[6] "3D Scanners," UW Makerspace. https://making.engr.wisc.edu/3d-scanners-2/ (accessed Oct. 14, 2021).

[7] "3D Printers," UW Makerspace. https://making.engr.wisc.edu/3d-printers-2/ (accessed Oct. 14, 2021).