Microscope Cell Culture Incubator

Team: Katie McGovern, Maya Tanna, Sam Bardwell, Caroline Craig, Ethan Hannon, Olivia Jaekle **Advisor**: Dr. Melissa Kinney **Client**: Dr. John Puccinelli **Date**: 10/15/2021

Figure 1: Cell Culture Plates [1]

DEPARTMENT OF Biomedical Engineering UNIVERSITY OF WISCONSIN-MADISON

Background Information

- Cell Cultures
 - Lab method for the use of studying cell biology, replicating disease mechanisms, and investigating drug compounds [2]
 - Use both primary, transformed, and self-renewing cells
- Incubators
 - Replicate cells' natural conditions in order for optimal growth
 - Natural Cell Environment 37° C, pH = 7.2-7.4, 95% humidity [3]
 - o 2 Types:
 - 1. Water-Jacketed
 - 2. Direct Heat
 - Cost: \$500-\$40,000 [4]

Problem Statement

- Purpose: Develop a low cost cell culture incubation chamber that is compatible with an inverted microscope and capable of live cell imaging.
- Current commercially available systems
 - Sometimes result in evaporation from low volume cultures
 - > Expensive
 - > Too large
 - Enclose the entire microscope

Figure 2: Cell Culture Procedure [5]

PDS Summary

Performance requirements:

- Compatible with an inverted microscope
- Maintain an internal environment of 37°C, 5% CO₂, and 95-100% humidity

Safety:

• Biosafety Level 1 Standards [6]

Accuracy and Reliability:

- Temperature of $37^{\circ}C \pm 0.5^{\circ}C$, humidity of >95%, and CO₂ levels of 5% ± 0.1%
- Maintain internal environment for at least 1 week

Figure 3: Measurements of Inverted Microscope [7]

Maya Tanna

PDS Summary cont.

Size:

- Incubator < 310x300 mm with a thickness < 32.40 mm
 Materials:
- Transparent top and bottom surfaces

Target Production Cost:

● <\$100

Maya Tanna

Competition:

- Previous BME 200/300 design projects
- ThermoFisher NuAire, and New Brunswick [4]
- Portable Live-cell Imaging Box ~ \$400 materials

jure 4: Portable Live-Cell Imaging Platform [8]

Figure 5: Thermo Fisher

Incubator [9]

Preliminary Design #1

Past Project Refurbished

Strengths:

- Streamlined production
- Previous internal condition testing
- Compatible with inverted microscope

Weaknesses:

- Not cost-effective
- Materials need improvement
- Non-reliable sensors

Figure 6: Past Project Schematic

Caroline Craig

Preliminary Design #2

Heated Water Pump Incubator

Strengths:

- More reliable system for desired materials
- Microscope compatibility
- Arduino sensor compatibility
- Lowest Cost

Weaknesses:

 Measuring internal environment

Figure 7: Heated Water Pump Incubator

Table #1: Specific Measurements of Heated Water Pump Incul	oator
--	-------

Item NO.	Item Description	Dimensions (mm)	QTY.
1	Top glass plate	250 x 200 x 5	1
2	Sealed glass plate holder	260 x 210 x 6	1
3	Metal tube for water	d = 7.16	1
4	Outer box of incubator	250 × 200 × 28	1
5	Inner box of incubator to hold cell plate	140 x 96 x 18	1
6	Lower glass plate	250 x 200 x 5	1

Figure 8: Expanded version of heated water pump incubator

2

3

6

Sam Bardwell

Preliminary Design #3

Shelving Incubator

Strengths:

- Compatible with inverted microscope
- Safe design; not harmful to user

Weaknesses:

- Maintain accurate internal conditions
- Lack of internal visualization
- Ergonomics
- Shelf-life
- Cost

Figure 9: Shelving Incubator

Ethan Hannon

Design Matrix

- Internal Environment: 37°C, 5% CO₂, and 95-100% humidity
- Microscope compatibility: product < 310x300x32.40mm
- Accuracy and Reliability
- Ergonomics
- Cost: <\$100
- Life in service: up to one week
- Safety

Figure 10: Design Ideas

Design Matrix

			Past Project Refurbished		Heated Water Pump Incubator		Shelving Incubator	
Rank	Criteria	Weight	Score (10 max)	Weighted Score	Score (10 max)	Weighted Score	Score (10 max)	Weighted Score
1	Internal Environment	25	9	23	7	18	5	13
2	Microscope Compatibility	20	10	20	10	20	10	20
3	Accuracy and Reliability	20	7	14	8	16	4	8
4	Ergonomics	15	5	8	8	12	4	6
5	Cost	10	2	2	4	4	3	3
6	Life in Service	5	10	5	10	5	10	5
7	Safety	5	10	5	10	5	10	5
	Sum	100	Sum	76	Sum	80	Sum	60

Olivia Jaekle

Future Work

- 1. Order materials
- 2. 3D Print SolidWorks Design
- 3. Start working on Arduino code for the sensors
- 4. Create test protocols for each design component

Figure 11: Polycarbonate Roofing Glass [10]

Upcoming Project Goals

NIVERSITY OF WISCONSIN–MADISON

References

- 1. Sponsored by BINDER GmbHApr 10 2014, "Application of binder incubators for human skin cell cultures," *AZoM.com*, 26-Apr-2019. [Online]. Available: https://www.azom.com/article.aspx?ArticleID=10891. [Accessed: 11-Oct-2021].
- 2. C.-P. Segeritz and L. Vallier, "Cell culture: Growing cells as model systems in vitro," *Basic Science Methods for Clinical Researchers*, 2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149418/. [Accessed: 11-Oct-2021].
- "White Paper No. 29 CO incubators best practices." [Online]. Available: https://www.eppendorf.com/product-media/doc/en/151861/Eppendorf_CO2-Incubators_White-Paper_029_CO2-Incubators_Best-Practices-Selection_Set-up-Care.pdf. [Accessed: 11-Oct-2021].
- "Average Cost of Cell Culture Incubator," Google shopping. [Online]. Available: https://www.google.com/search?q=average%2Bcost%2Bof%2Ba%2Bcell%2Bculture%2Bincubator&sa=X&rlz=1C1CHBF_enUS919US919&biw=1309&bih=882& tbm=shop&tbs=mr%3A1%2Cp_ord%3Apd%2Cnew%3A1&ei=OQBJYe-2GuiO9PwPpcK6sAg&ved=oahUKEwivt7G9w07zAhVoB50JHSWhDoYQuwoljwUoAw. [Accessed: 20-Sep-2021].
- 5. "Proper care and maintenance for a Cell Culture Incubator." [Online]. Available: https://assets.thermofisher.com/TFS-Assets/LED/Warranties/TNCO2CAREFEED-EN.pdf. [Accessed: 11-Oct-2021].
- 6. A. Trapotsis, "Biosafety levels 1, 2, 3 & amp; 4: What's the difference?," Consolidated Sterilizer Systems, 01-Apr-2020. [Online]. Available: https://consteril.com/biosafety-levels-difference/. [Accessed: 20-Sep-2021].
- 7. "Research IX71/IX81 olympus america." [Online]. Available: https://www.olympusamerica.com/files/seg_bio/IX71IX81%20brochure.pdf. [Accessed: 11-Oct-2021].
- 8. M. P. Walzika, V. Vollmar, T. Lachnit, H. Dietz, S. Haug, H. Bachmann, M. Fath, D. Aschenbrennera, S. A. Mofradab, O. Friedrich, and D. F. Gilbert, "A portable low-cost long-term live-cell imaging platform for biomedical research and education," *Biosensors and Bioelectronics*, vol. 64, pp. 639–649, Feb. 2015.
- 9. "Forma[™] series II 3110 water-jacketed co2 incubator, 184 L, polished stainless steel," *Thermo Fisher Scientific US*. [Online]. Available: https://www.thermofisher.com/order/catalog/product/3110#/3110. [Accessed: 11-Oct-2021].
- 10. "frosted polycarbonate roofing sheet transparent thermal insulation sheets," Frosted Polycarbonate Roofing Sheet Transparent Thermal Insulation Sheets Buy Frosted Polycarbonate
 Sheet, Transparent Thermal Insulation Sheets, Polycarbonate Roofing Sheet Product on Alibaba.com. [Online]. Available:
 https://www.alibaba.com/product-detail/Sheet-Transparent-Thermal-Insulation-Sheets-Transparent_60725838304.html?spm=a2700.galleryofferlist.normal_offer.d_title.387b5554VWTd
 35&s=p. [Accessed: 11-Oct-2021].
- 11. UW MakerSpace. .

Olivia Jaekle

Questions ?

DEPARTMENT OF Biomedical Engineering UNIVERSITY OF WISCONSIN-MADISON