**BME 400** 



#### DEPARTMENT OF Biomedical Engineering UNIVERSITY OF WISCONSIN–MADISON Continuing Project: Adaptive Rowing Machine Preliminary Presentation October 7th, 2022 Client: Ms. Staci Quam Advisor: Dr. TJ Puccinelli, Lab Section 307

## Team Members



**BSAC:** Samuel Skirpan Communicator: Josh Andreatta **BWIG:** Tim Tran **Team Leader:** Annabel Frake

**BPAG:** Roxi Reuter





## **Overview of Presentation**

- Client Introduction
- Problem Statement
- Background Knowledge
- Competing Designs
- PDS
- Past Design Work
- Design Improvements
- Future Work





## **Client Introduction**

- Ms. Staci Quam
- Mechanical Engineer and Biomech Lab Lead at Johnson Health Tech



# MATRIX





[1][2]

## Problem Statement

- Individuals in wheelchairs have trouble utilizing exercise equipment
- Rowing machines are not accessible to wheelchair users
- A standard Matrix rowing machine [3] will be adapted
- User safety must be ensured during interactions





[3]

## Motivation

- 5.5 million wheelchair users in the U.S. [4]
- Exercise machines at fitness centers lack adaptive equipment [5]
- Upper body pain is common problem amongst wheelchair users [6]
- Existing devices permanently change functionality of rower [7]





[5]

# Physiological Research

- Consistent exercise is essential to prevent pain [6]
- A rowing exercise activates numerous muscle groups [8]
- 4 phases of the exercise [9]:
  - Catch (a)
  - Drive (b)
  - Finish (c)
  - Recovery (d)



[9]





## Competing Designs: Adaptive Rowing Machine (AROW)

- Designed by researchers at British Columbia Institute of Technology
- Specifically for Concept 2
- Design and fabrication instructions are free





[5]

## BME 301 Rower Accomplishments

- Slit cut in rower neck to transition rope
- Pulley plates to support 2<sup>nd</sup> pulley
- Console swivel bracket to turn display
- Wooden stabilization frame





# **Product Design Specifications**

- Zero outside assistance required
- Materials made out of metal and professionally fabricated
- Withstands at least 10 years of usage or 8 million meters [11]
- Users will need to reach a max of 0.55 m to grab the handle [12]
- Normal rowing motion is preserved 4 rowing phases
- Pulley Plates withstand 1050 N load (safety factor = 2) [13]
- Adjustable design to accommodate varying sized wheelchairs [14]
  - Width of Frame: 0.6 0.7 m
  - Height of Seat: 0.45 0.5 m
  - Length: 0.9 1.25 m



## Current Stabilization Design



- Made out of 2x4s and 2x6s
- Utilizes strap mechanism to secure wheelchair
- Prevents tipping from occurring
- Room for improvement:
  - Not adjustable
    - Max width of 66 cm
  - User is not prevented from falling out of wheelchair



# Design Improvement: Pad Support



\*Note: Drawings not to scale

- Frame will be built out of durable metal
- Utilizes both pin-angle and lever adjustability
- Lap pad supports user and prevents tipping
- Connects to rower via baseboard





## Current Design: Pulley Plate

- 2<sup>nd</sup> pulley held in place by pulley plates (tough PLA)
- Slit in the rower neck for rope transition 9.75 cm

• Room for improvement:

- Rower welds inhibit plate fit
- Must remove rope tension to transition handlebar



16.88 cm



## Design Improvement: Antler Design

- Removal of rower neck
- Addition of 2 antlers to relocate the rower handle
- Attached to pulley plates
- Solves tension-removal issue for handle bar transition



\*Note: Drawings not to scale

#### Roxi Reuter



## Console Design



- Console attached to one antler
- Servo/Stepper motor rotates console 180°
- Automatic adjustment of console with limit switch

Side View (Left of adapted side) \*Note: Drawings not to scale

Front View (Adapted Side)

#### Annabel Frake





## Future Work

- Create CAD files of design improvements
- Source materials
- Fabricate
- Generate test plans



#### Annabel Frake



## Acknowledgements

Thank you to our advisor and teacher - Dr. TJ Puccinelli

### Thank you to our client - Ms. Staci Quam

## Thank you to past contributors - Dhruv Biswas, Cate Flynn, and Dr. John Puccinelli





## References

[1]"Johnson Health Tech North America," Facebook. [Online]. Available: https://www.facebook.com/JHTNA/. [Accessed: 23-Feb-2022].

[2] "Matrix fitness," Matrix Fitness. [Online]. Available: https://matrixhomefitness.com/. [Accessed: 23-Feb-2022].

[3]"Rower | Matrix Fitness - United States." https://matrixfitness.com/us/eng/group-training/cardio/rower (accessed Feb. 07, 2022).

[4]"Wheelchair and Power Mobility for Adults," PM&R KnowledgeNow, Mar. 14, 2017. https://now.aapmr.org/wheelchair-and-power-mobility/ (accessed Apr. 28, 2022).

[5] J. H. Rimmer, B. Riley, E. Wang, A. Rauworth, and J. Jurkowski, "Physical activity participation among persons with disabilities: Barriers and facilitators,"

American Journal of Preventive Medicine, vol. 26, no. 5, pp. 419–425, Jun. 2004, doi: 10.1016/j.amepre.2004.02.002.

[6] O. W. Heyward, R. J. K. Vegter, S. de Groot, and L. H. V. van der Woude, "Shoulder complaints in wheelchair athletes: A systematic review," PLOS ONE, vol. 12, no. 11, p. e0188410, Nov. 2017, doi: 10.1371/journal.pone.0188410.

[7] "Rowing Solutions - Adapted Rowing Machine (AROW)." https://adaptederg.commons.bcit.ca/rowing-solutions/ (accessed Feb. 07, 2022).

[8] David, "Muscles used," Concept2, 26-Jul-2021. [Online]. Available: https://www.concept2.com/indoor-rowers/training/muscles-used. [Accessed: 04-Feb-2022].

[9] N. Caplan, A. Coppel, and T. Gardner, "A review of propulsive mechanisms in rowing," Proceedings of The Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, vol. 224, pp. 1–8, Mar. 2010, doi: 10.1243/17543371JSET38.

[10]H. De las Casas, K. Kleis, H. Richter, K. Sparks, and A. van den Bogert, "Eccentric training with a powered rowing machine," Medicine in Novel Technology and Devices, vol. 2, p. 100008, Jun. 2019, doi: 10.1016/j.medntd.2019.100008.

[11]"How Long Will A Concept 2 Rowing Machine Last? - Rowing Machine 101." http://rowingmachine101.com/concept-2-rowing-machine-lifespan/ (accessed Feb. 09, 2022).

[12] J. Looker, "Reaching for Holograms: Assessing the Ergonomics of the MicrosoftTM HololensTM 3D Gesture Known as the 'Air Tap," Oct. 2015.

[13] N. Découfour, F. Barbier, P. Pudlo, and P. Gorce, "Forces Applied on Rowing Ergometer Concept2®: a Kinetic Approach for Development (P94)," p. 8.

[14] P. Patel, "Wheelchair Dimensions - A Complete Wheelchair Size Guide," GharPedia, 23-Apr-2016. [Online]. Available:

https://gharpedia.com/blog/need-dimensions-wheelchairs/. [Accessed: 16-Sep-2022].

#### Annabel Frake



## QUESTIONS



# Appendix A: Stabilization DesignsBar-in-Bar Pad SupportBase Stabilization Frame







|                                    | Bar-in-Bar | Pad Support | Base Stabilization Frame |    |  |
|------------------------------------|------------|-------------|--------------------------|----|--|
| Safety / Security<br>(30%)         | 5/5        | 30          | 3/5                      | 18 |  |
| Adjustability (25%)                | 5/5        | 25          | 1/5                      | 5  |  |
| Ease of Fabrication (15%)          | 2/5        | 6           | 4/5                      | 12 |  |
| Ease of Use (15 %)                 | 4/5        | 12          | 5/5                      | 15 |  |
| Cost (10%)                         | 3/5        | 6           | 4/5                      | 8  |  |
| Integration to<br>Environment (5%) | 5/5        | 5           | 3/5                      | 3  |  |
| Total for each design:             | 84         |             | 61                       |    |  |



# Appendix B: Console Designs

## 1 Pivot Point

2 Pivot Points











|                                 | 1 Pivot Point |    | 2 Pivot Points |    | Motor |    |
|---------------------------------|---------------|----|----------------|----|-------|----|
| Ergonomics<br>(30%)             | 4/5           | 24 | 5/5            | 30 | 4/5   | 24 |
| Ease of<br>Rotation<br>(20%)    | 3/5           | 12 | 2/5            | 8  | 5/5   | 20 |
| Ease of<br>Fabrication<br>(20%) | 5/5           | 20 | 4/5            | 16 | 4/5   | 16 |
| Durability<br>(15%)             | 4/5           | 12 | 3/5            | 9  | 5/5   | 15 |
| Safety (10%)                    | 5/5           | 10 | 4/5            | 8  | 3/5   | 6  |
| Cost (5%)                       | 5/5           | 5  | 5/5            | 5  | 4/5   | 4  |
| Total for each design:          | 83            |    | 76             |    | 85    |    |

