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Problem Statement

● Chronic lung diseases can cause damage to epithelial tissues of the lungs

● Tissue damage triggers fibrotic response in sub-epithelial fibroblasts that results in 
further disease and fibrosis

● Currently no scaffolds that accurately model the lung extracellular matrix (ECM) and its 
changes due to cell injury, specifically the following properties in combination: 

● varying mechanical stiffness and tension
● porosity
● incorporation of collagen and fibronectin within ECM
● cell adhesive properties

● Dr. Brasier of the UW SMPH requires scaffold that meets criteria while having a uniform 
and replicable composition to allow for epithelial cell culture at air-liquid interface
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Lung Extracellular Matrix Background

● Lung ECM
○ Basement membranes vs. Interstitial Spaces [1]

● Function
○ Physical support, Cell migration track, Injury repair [2]

● Fibroblasts
○ ECM protein production
○ Effector cell for injury repair [3] 
○ Activated by the stimulation of cytokines (TGF-𝛽1, PGDF, and FGF2) 
○ Fibronectin, maintains and directs tissue organization

● Collagen(I-IV and XVIII) 
○ Secreted by Myofibroblasts [4]
○ Provide tensile strength, regulate cell adhesion, direct tissue development [5]

Figure 1: ECM Diagram
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Cell Culture Scaffold Background 

3D cell culture:
● Mimic in-vivo ECM better
● Allow cell-cell and cell-ECM interactions [6]

Air-liquid-interface (ALI):
● Basal surface (bottom): liquid culture medium
● Apical surface (epithelial cells): air [7]

Natural vs synthetic scaffolds:
● Natural: biodegradable but unreliable
● Synthetic: longer life, replicable, known 

composition [8]
→ Semi-synthetic

2D culture 3D culture

ALI Submerged

vs

Figure 2: 
2D vs 3D culture

Figure 3: ALI vs submerged model
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Design Criteria and Specifications
● Primary design goal is to mimic the small airway extracellular matrix 

(ECM)

● Mechanical stiffness (0.44-7.5 kPa) [9]

● Epithelial cell adhesion 

● Permeability to water soluble molecules

● Model must include and air-liquid interface (ALI) 

● Mechanical and biochemical properties of the 3D scaffold must be 
compatible with lung epithelial cells used for experimentation

● The ECM should be able to incorporate different proteins such as 
fibronectin and collagen
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Competing Designs
● 2D Models typically include layers of cells 

on top of polymer or glass dishes

● Stiffness of these models range 
from 2-4 GPa. Stiffness of the 
human lung ranges from .44-7.5 
kPa [9]

● 3D Models

● Matrigel: Co-culture model using 
ECM protein gel. ECM environment 
is more similar to in vivo than 2D, 
but there exists a lot of variation 
between batches [10] Figure 4: Competing Scaffold Design 
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Preliminary Scaffold Designs 

● Lung Young’s Modulus from .44-7.5 kPa [9]
● GelMa and PEG Young’s Modulus have a range of 5-300 kPa, altered by % concentration [11]
● Alginate ranges from 9-1000 kPa [12]

Polyethylene Glycol (PEG)
● Biocompatible with no 

natural adhesive 
properties [14]

● PEG-Collagen scaffold 
has shown high cell 
viability (hMSCs) [15] 

● Young’s Modulus: 
6.56+/-.18 kPa (5%) [16]

Alginate 
● Variation in structure 

due to it being 
extracted from brown 
seaweed [17]

● Counteractions for 
these variations too 
expensive

● Possible contaminants

Gelatin Methacrylate 
(GelMA) 

● Natural adhesive 
properties 

● Variation during 
reaction of 
formation[13]

● Young's Modulus: 
6.23+/-.64 kPa (7%)
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Scaffold Design Matrix



9

Future Work
Testing

● Mechanical Stiffness
○ Range within native EMT unit

● Porosity/Permeability
○ In presence of hydrophilic molecules

● Translucency
○ Required by 3D scaffold to observe cells under microscope

● Cell Adhesiveness
○ Ability for incorporated cells to adhere to ECM scaffold

● Degradability
○ Balance between ease of cells entering scaffold and premature scaffold breakdown

Testing Upon Model’s Success
● Client will:

● Perform cell culture
● Use scaffold for imaging
● Incorporate fibroblasts into scaffold
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