

DEPARTMENT OF Biomedical Engineering UNIVERSITY OF WISCONSIN-MADISON

Stage Top Platform for Stable and Long-Term Intravital Imaging of Mouse Mammary Tumor Models

Members

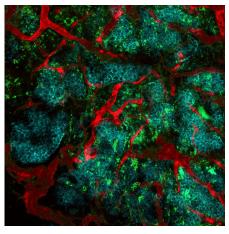
- Hailey Kanter (BWIG)
- Abbylee Maeder (Communicator)
- Amara Monson (BSAC)
- Christy Li (BPAG)
- Joel Matthews (Team Leader)

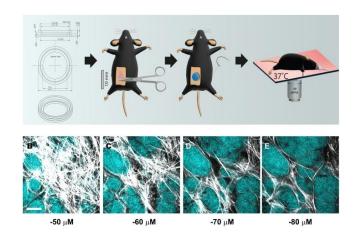
Clients and Advisors

Dr. Kris Saha

Background Material

- Intravital imaging for breast cancer research
- Stainless steel imaging window
- PDMS imaging window




From left to right: (1) Stainless steel imaging window [1], (2) PDMS imaging window [2], (3) examples of metal and plastic risers and metal tray, (4) plastic riser set up in microscope

Problem Statement

- Flexible PDMS lens that stays in mouse for up to 8 weeks
- Stage top platform that stabilizes PDMS lens
- Pressure must be put on mammary gland during imaging

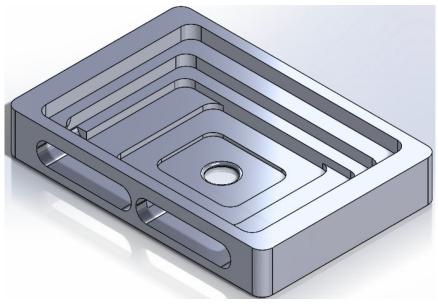
From left to right: (1) Collagen dense tumor microenvironment [3], (2) Set up for intravital imaging [4]

Product Design Specifications

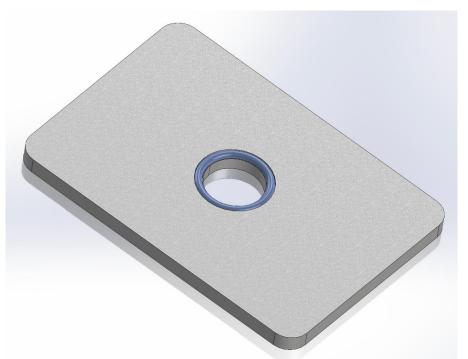
- Safety of mouse
- Precise range of motion for objective lens
 - 67mm X, 91mm Y, and 9.3mm Z
- Limit movement of lens for duration of intravital imaging
- Stagetop platform:
 - 2.75 inches by 4.0 inches
 - 1 inches tall with request to lower 2-3 mm
- Material must be able to withstand a heating chamber for 8 hours
- Budget: \$1,500

Competition

- No market product currently available for purchase
- Client's PhD student designed the current system in use


Design Idea 1 - Indented Cut Cylinder

Design Idea 2 - Extruded Cylinder



Biomedical Engineering UNIVERSITY OF WISCONSIN-MADISON

Design Idea 3 - Gel Ring

Design Matrix - Hailey

Design Criteria	Extruded Cylinder		Indented Cut Cylinder		Gel Ring	
	Score out of 5	Weighted Score	Score out of 5	Weighted Score	Score out of 5	Weighted Score
Ease of Use (15)	5/5	15	5/5	15	4/5	12
Ease of Fabrication (15)	3/5	9	5/5	15	4/5	12
Cost (10)	5/5	10	5/5	10	3/5	6
Safety (10)	4/5	8	5/5	10	5/5	10
Precision (Lack of Movement) (25)	4/5	20	4/5	20	5/5	25
Accuracy (Quality of Image) (25)	4/5	20	4/5	20	5/5	25
Total (100)	82		90		90	

Future Work and Conclusion - Hailey

- Stabilizing apparatus
- Imaging of multiple mice
- Fabrication of the prototype
- Testing plan/Testing

References

[1] T. Sobolik et al. "Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging," *PubMed,* Jan. 2016. [Online]. Available: https://pubmed-ncbi-nlm-nih-gov.ezproxy.library.wisc.edu/28243517/. [Accessed: 04-Oct-2022]

[2] G. Jacquemin, "Longitudinal high-resolution imaging through a flexible intravital imaging window," *Science Advances*, Jun-2021. [Online]. Available: https://www-science-org.ezproxy.library.wisc.edu/doi/10.1126/sciadv.abg7663.

[3] "Research," *Ponik Lab*. [Online]. Available: https://ponik.crb.wisc.edu/research/. [Accessed: 06-Oct-2022].

[4] "Peer reviewed scientific video journal - methods and protocols," *JoVE*. [Online]. Available: https://www.jove.com/t/63413/a-label-free-segmentation-approach-for-intravital-imaging-mammary. [Accessed: 06-Oct-2022].

Questions?

