

Reducing Whole Body Vibration in Neonatal Transport

Clients: Dr. Ryan McAdams and Dr. Joshua Gollub

Advisor: Dr. Justin Williams

The Team

Joshua Varghese: Team Leader Sydney Therien: Communicator Neha Kulkarni: co-BWIG Julia Salita: co-BWIG Joey Byrne: BPAG Greta Scheidt: BSAC

Figure 1: Team Picture

The Clients

- Dr. Ryan McAdams, MD
 - Neonatology Division Chief
 - UW faculty member for the UW School of Medicine and Public Health
 - 24 years of experience in neonatal transport medicine
 - 10 years of experience with aeromedical transports in the Air Force
- Dr. Joshua Gollub, MD
 - Fellow at the University of Wisconsin School of Medicine and Public Health
 - Specializes in neonatal medicine

Figure 2: Team Members, Clients, and Med Flight team at the UW Hospital Helicopter Pad

Overview

- Problem Statement
- Background Research
- Competing Designs
- Product Design Specifications
- Competing Designs
- Preliminary Designs
- Design Matrix
- Conclusion and Future Work
- Acknowledgements
- References

Problem Statement

- The need to transport critically ill neonates is very common
- Transport vehicles induce vibrations, translational and rotational motion, and excessive sound [1]
 - Whole Body Vibrations (WBV)
 - Causes intraventricular hemorrhage (IVH), neurodevelopmental impairment, or death [2].
- No established vibration-reducing device.

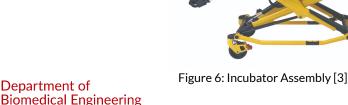

Figure 3: Neonatal Transport via Med Flight [3]

Figure 4: Transport Via Ambulance [4]

Background

- Critically ill neonates
 - birth defects
 - pre-term (<37 weeks of gestation) [5]
 - VERY fragile
- Current transport setup consists of:
 - Incubator
 - Incubator control box
 - Support systems
 - Platform
 - Mattress
- Incubator Functions/ Compatibility:
 - Ventilators
 - Temperature control
 - Monitoring Equipment

Y OF WISCONSIN-MADISON

Figure 5: Neonate in NICU [6]

Competing Designs

- Quasi-zero-stiffness (QZS) isolator [7]
 - Uses a pair of repelling permanent magnets
 - Magnets are in parallel connection to a coil spring
 - Targets low-frequency components of vibration
- Isolation device for shock reduction [8]
 - Pair of plates- one on stretcher and one on incubator
 - Springs/ gas springs in the gap between the plates

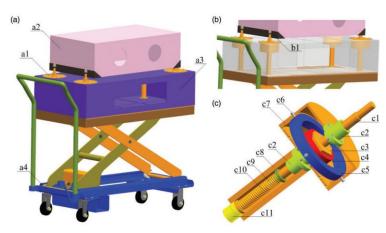


Figure 7: Quasi-zero-stiffness isolator design [9]

Product Design Specifications

Decrease vibrations to be below 0.87 m/s^2 [11]

- Allow for continuous treatment with no interference
- White or gray to be easily cleaned [10]

Should follow all medical safety standards Reduce the volume of excessive sound levels to be below 45 decibels [12] Allow the infant to maintain proper vital signs [13] Functional for neonates ranging from 300g to 5500g (0.66-12lbs) [14]

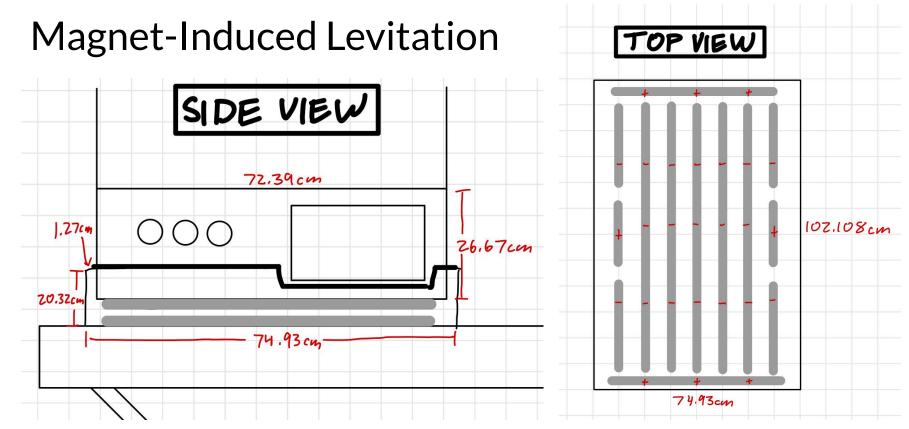


Figure 8: A side view of the magnet-induced levitation concept.

Figure 9: A cross-sectional top view of the magnet configuration.

Metal/Gel Composite Damping

689±0.250	1
	322±0.25

Figure 10: Top view of incubator trays with corner dampers

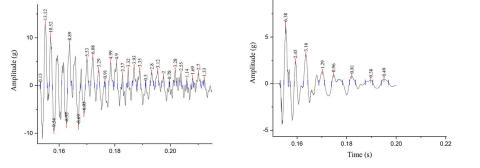
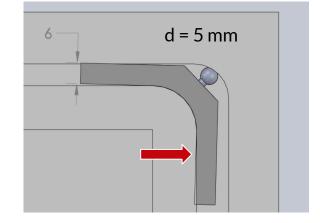
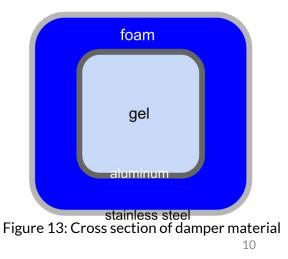




Figure 12a: Damping curve of solid steel [15]

Figure 12b: Damping curve of layered damper [15]

Figure 11: Close-up corner view of damper

Shock-Absorbing Mat

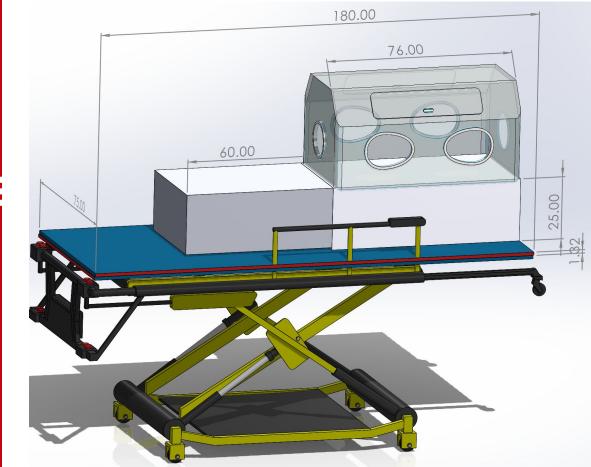


Figure 14: 3D Model of the Implementation of a 1.32 cm foam mat between the stretcher and transport monitoring systems.

Design Matrix

Table 1: Design matrix for the evaluation of 3 proposed designs.

Design Categories (Weight)	Magnet-Induced Levitation		Metal/Gel Composite Damper		Shock- Absorbing Mat(s)	
Safety (25)	3/5	15	4/5	20	5/5	25
Projected Performance (25)	3/5	15	5/5	25	2/5	10
Compatibility (20)	2/5	8	3/5	12	4/5	16
Ease of Fabrication (15)	1/5	3	2/5	6	5/5	15
Longevity (10)	3/5	6	3/5	6	4/5	8
Cost (5)	4/5	4	3/5	3	3/5	3
Total Points:	51		72		67	

Future Work

- Combining designs
 - Metal/Gel Damper
 - Head restraint [16]
 - Shock-Absorbing Mat
- Build prototype

Figure 15: Head restraint system [16]

- Challenges: size of design, attachment to existing system
- System for measuring vibration \rightarrow testing

Acknowledgements

- Dr. Ryan McAdams, MD
- Dr. Joshua Gollub, MD
- Dr. Justin Williams
- Dr. Heidi Kamrath, MD
- UW Health Staff
- BME Department

References

[1] I. Goswami, "Whole-body vibration in neonatal transport: a review of current knowledge and future research challenges - ClinicalKey." July 2020.

https://www-clinicalkey-com.ezproxy.library.wisc.edu/#!/content/playContent/1-s2.0-S0378378220302139?returnurl=null&referrer=null (accessed Sep. 21, 2022).

[2] M. I. Levene, C. L. Fawer, and R. F. Lamont, "Risk factors in the development of intraventricular haemorrhage in the preterm neonate.," Arch. Dis. Child., vol. 57, no. 6, pp. 410–417, Jun. 1982.
[3] International Biomedical, 2022. Isolette being loaded into helicopter. [image] Available at: https://int-bio.com/wp-content/uploads/2021/04/DSC_0463-scaled.jpg> [Accessed 6 October 2022].

[4] Shutterstock, 2021. Ambulance Transport. [image] Available at: [Accessed 6 October 2022].

[5] World Health Organization. 2018. Preterm birth. [online] Available at: https://www.who.int/news-room/fact-sheets/detail/preterm-birth> [Accessed 5 October 2022].

[6] Caters News, 2017. 700 Gram Neonate. [image] Available at: http://www.storytrender.com/wp-content/uploads/2017/05/3_2_CATERS_HANDS_SIZE_OF_FINGERNAILS_03-1024x599.jpg [Accessed 6 October 2022].

[7] J. Zhou, K. Wang, D. Xu, H. Ouyang, and Y. Fu, "Vibration isolation in neonatal transport by using a quasi-zero-stiffness isolator," J. Vib. Control, vol. 24, no. 15, pp. 3278–3291, Aug. 2018, doi: 10.1177/1077546317703866.

[8] "Blood pressure disorders | Safer Care Victoria." https://www.safercare.vic.gov.au/clinical-guidance/neonatal/blood-pressure-disorders (accessed Sep. 23, 2022).

[9] American Academy of Pediatrics and American College of Obstetricians and Gynecologists, Eds., Guidelines for perinatal care, 7th ed. Elk Grove Village, IL : Washington, DC: American Academy of Pediatrics ; American College of Obstetricians and Gynecologists, 2012.

[10] D. Stipe, "Color in Medical Products." https://formamedicaldevicedesign.com/white-papers/color-medical-products/undefined (accessed Sep. 23, 2022).

[11]I. Goswami, "Whole-body vibration in neonatal transport: a review of current knowledge and future research challenges - ClinicalKey." July 2020.

https://www-clinicalkey-com.ezproxy.library.wisc.edu/#!/content/playContent/1-s2.0-S0378378220302139?returnurl=null&referrer=null (accessed Sep. 21, 2022).

[12] "What Decibel Level Is Safe for Babies | Safe Noise Levels for Babies," Decibel Meter App | Best Digital Sound Level Meter For Your Smartphone, Jun. 27, 2021.

https://decibelpro.app/blog/safe-decibel-levels-for-babies/ (accessed Sep. 21, 2022).

[13] S. Reuter, C. Moser, and M. Baack, "Respiratory Distress in the Newborn," Pediatr. Rev., vol. 35, no. 10, pp. 417–429, Oct. 2014.

[14]"Baby weight chart: what's the average weight for a newborn? | GoodTo." https://www.goodto.com/family/babies/your-baby-s-weight-69876 (accessed Sep. 21, 2022).

[15] B. Biju, A. Ramesh, A. R. Krishnan, A. G. Nath, and C. J. Francis, "Damping characteristics of woodpecker inspired layered shock absorbing structures," *Materials Today: Proceedings*, vol. 25, pp. 140–143, 2020, doi: <u>https://doi.org/10.1016/j.matpr.2019.12.187</u>.

[16]F. Darwaish, "Investigating Vibration Levels in Neonatal Patient Transport," Master of Applied Science, Carleton University, Ottawa, Ontario, 2020. doi: 10.22215/etd/2020-14398.

Questions?

