Microscope Cell Culture Incubator

Team: Katie Day, Maya Tanna, Sam Bardwell, Drew Hardwick, Bella Raykowski Advisor: Dr. Amit Nimunkar Client: Dr. John Puccinelli Date: 10/07/2022

Figure 1: Cell Culture Plates [1]

Background Information

- **Client:** Dr. John Puccinelli; Associate Chair of the Undergraduate Program
- Cell Cultures
 - Lab method for the use of studying cell biology, replicating disease mechanisms, and Ο investigating drug compounds [2]
 - Use both primary, transformed, and self-renewing cells Ο
- Incubators
 - Replicate cells' natural conditions in order for optimal growth Ο
 - Natural Cell Environment 37° C, pH = 7.2-7.4, 95% humidity [3] -
 - Cost: \$500-\$40,000 [4] Ο
- Live Cell Imaging
 - Allows researchers to continually view cell development Ο
 - Need incubator on a microscope in order to keep cells alive Ο for imaging

Figure 2: On-stage incubator [4]

Problem Statement

- Purpose: Develop a low cost cell culture incubation chamber that fits on a microscope stand (<310x300x45mm), does not interfere with the lens optics, and is capable of live cell imaging.
- Current commercially available systems
 - Sometimes result in evaporation from low volume cultures
 - Expensive, too large, Enclose the entire microscope
 - Previous BME 200/300 design projects
 - Portable Live-cell Imaging Box ~ \$400 materials
 - Elliot Scientific and OkoLabs Stage Top Incubators[4] ~ \$400-\$1,000

Figure 3: Cell Culture Procedure [5]

PDS Summary

Performance requirements:

- Compatible with an inverted microscope in both size and function
- Maintain an internal environment of 37°C, 5% CO₂, and 95-100% humidity

Safety:

• Biosafety Level 1 Standards [6]

Accuracy and Reliability:

- Temperature of $37^{\circ}C \pm 1^{\circ}C$, humidity of >95%, and CO₂ levels of 5% ± 1%
- Maintain internal environment for at least 1 week

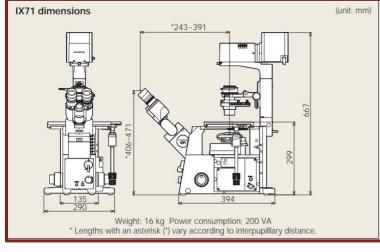


Figure 4: Measurements of Inverted Microscope [7]

PDS Summary cont.

Size:

- Incubator < 310x300 mm with a thickness < 45 mm
 Materials:
- Transparent top and bottom surfaces
- Target Production Cost:
- <\$100

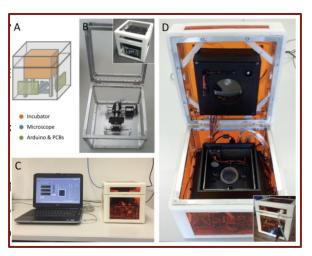


Figure 5: Portable Live-Cell Imaging Platform [8]

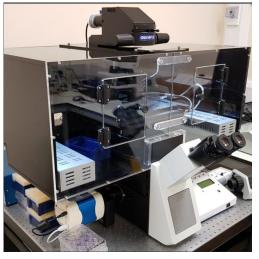


Figure 6: Elliot Scientific Stage Top Incubator [9]

Spring 2022 Work

Fabrication

- Laser cut black acrylic from UW-Makerspace
- Thermistor was used for temperature and humidity
- NDIR CO₂ Sensor used for CO, percentage reading

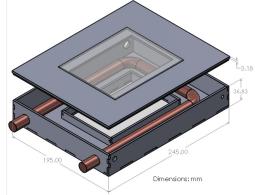


Figure 7: Final Prototype CAD drawing

Figure 8: Final Prototype setup

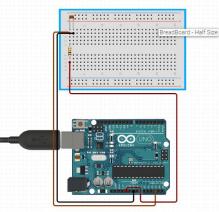


Figure 9: Thermistor Circuit Diagram

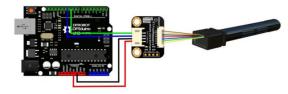
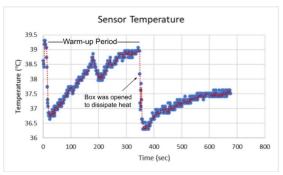


Figure 10: CO Circuit Diagram


Spring 2022 Testing

<u>Results</u>

- Temperature and humidity constant at 37°C and 95+%
- Recovery testing for temperature and humidity were successful
- Optical testing was successful

<u>Conclusions</u>

- Need to reduce condensation on glass
- Conduct live cell testing
- Develop best way to regulate CO₂ input

Figure 11: Temperature sensing results

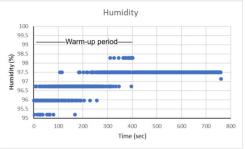
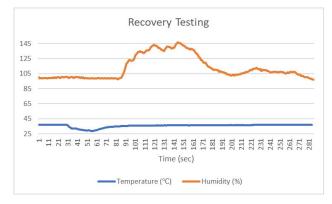
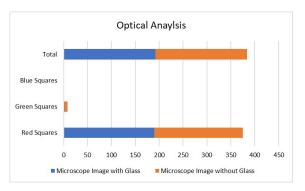




Figure 12: Humidity sensor results

DEPARTMENT OF

Figure 13: Recovery testing results.

Figure 14: Optical testing results

Preliminary Design #1

Solenoid Valve

Strengths:

- No Fabrication
- Electrically controlled
- No leaks

Weaknesses:

- Costs
- Power source

Figure 15: Image of the solenoid valve [10]

Preliminary Design #2

Threaded Pin Valve

Strengths:

- Costs
- Safety

Weaknesses:

- Leakage
- Accuracy

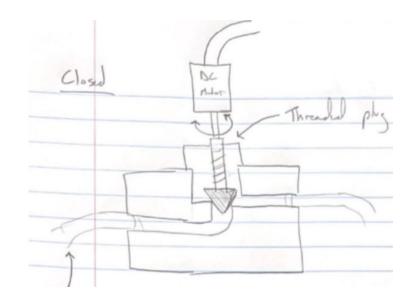


Figure 16: Drawing of the threaded pin valve design

9

Preliminary Design #3

Spring Pin Valve

Strengths:

- Fast closing response time
- Homemade

Weaknesses:

- Complex
- Leakage

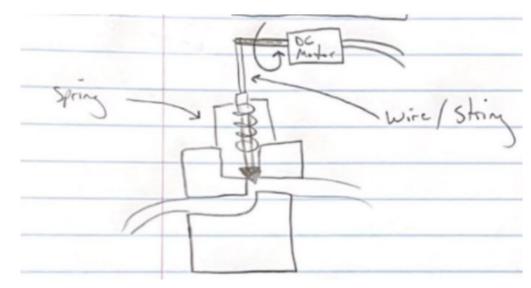


Figure 17: Drawing of the spring pin valve design

Design Matrix Criteria

- Accuracy and Reliability: Accuracy of CO2 input control
- Cost: What is the cheapest, but most reliable design?
- Ease of Use: Circuitry and coding control
- Fabrication: How easy is it to build?
- Life in Service: How long until device is not reliable?
- Safety

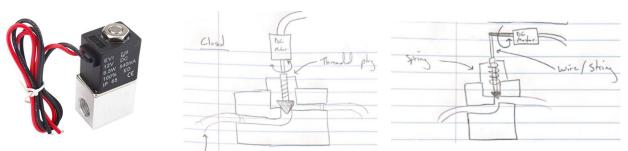


Figure 18: Images of Preliminary Designs #1-3

Design Matrix for CO2 Input Regulation

			Solenoid	Valve	Class (Mar	Pin Valve	Spring Pi	wire (string
Rank	Criteria	Weight	Score (5 max)	Weighted Score	Score (5 max)	Weighted Score	Score (5 max)	Weighted Score
1	Accuracy and Reliability	30	5	30	3	18	4	24
2	Cost	20	3	12	4	16	4	16
3	Ease of use	20	5	20	3	12	2	8
4	Fabrication	15	5	15	3	9	2	6
5	Life in Service	10	4	8	1	2	2	4
6	Safety	5	4	4	5	5	5	5
	Sum	100	Sum	89	Sum	62	Sum	63

Proposed Final Design

- Design #1
- Easiest setup
- No fabrication of the valve
- Most reliable CO2 input regulation via Arduino

Figure 19: Image of the Solenoid valve that will be used

Current Work

- Anti Fog Testing
- Cell Confluency Testing
- Solenoid Circuitry

Future Work

- CO2 input testing
- Incubator Homogeneity Testing
- Live cell testing

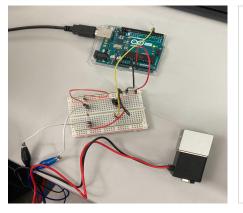
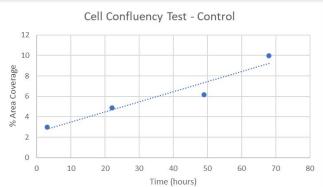



Figure 20: Solenoid Circuit Setup

Figure 22: Control Cells Day o


Figure 21: Cell Confluency Test - Control

Figure 23: Control Cells Day 3

Upcoming Project Goals

Special Thanks

Dr. John Puccinelli Dr. Amit Nimunkar **BME** Department

References

- 1. Sponsored by BINDER GmbHApr 10 2014, "Application of binder incubators for human skin cell cultures," *AZoM.com*, 26-Apr-2019. [Online]. Available: https://www.azom.com/article.aspx?ArticleID=10891. [Accessed: 11-Oct-2021].
- 2. C.-P. Segeritz and L. Vallier, "Cell culture: Growing cells as model systems in vitro," *Basic Science Methods for Clinical Researchers*, 2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149418/. [Accessed: 11-Oct-2021].
- "White Paper No. 29 CO incubators best practices." [Online]. Available: https://www.eppendorf.com/product-media/doc/en/151861/Eppendorf_CO2-Incubators_White-Paper_029_CO2-Incubators_Best-Practices-Selection_Set-up-Care.pdf. [Accessed: 11-Oct-2021].
- 4. "Microscope Incubation Systems," Elliot Scientific Website, 2020. [Online]. Available: https://www.elliotscientific.com/DPMH-Microscope-Incubators. [Accessed: 23-Feb-2022].
- 5. "Proper care and maintenance for a Cell Culture Incubator." [Online]. Available: https://assets.thermofisher.com/TFS-Assets/LED/Warranties/TNCO2CAREFEED-EN.pdf. [Accessed: 11-Oct-2021].
- 6. A. Trapotsis, "Biosafety levels 1, 2, 3 & amp; 4: What's the difference?," Consolidated Sterilizer Systems, 01-Apr-2020. [Online]. Available: https://consteril.com/biosafety-levels-difference/. [Accessed: 20-Sep-2021].
- 7. "Research IX71/IX81 olympus america." [Online]. Available: https://www.olympusamerica.com/files/seg_bio/IX71IX81%20brochure.pdf. [Accessed: 11-Oct-2021].
- 8. M. P. Walzika, V. Vollmar, T. Lachnit, H. Dietz, S. Haug, H. Bachmann, M. Fath, D. Aschenbrennera, S. A. Mofradab, O. Friedrich, and D. F. Gilbert, "A portable low-cost long-term live-cell imaging platform for biomedical research and education," *Biosensors and Bioelectronics*, vol. 64, pp. 639–649, Feb. 2015.
- 9. UW MakerSpace. .
- 10. "1/4inch DC 12V 2 Way Normally Closed Electric Solenoid Air Valve: Amazon.com: Industrial & Scientific." https://www.amazon.com/4inch-Normally-Closed-Electric-Solenoid/dp/Bo74Z5SDG3/ref=asc_df_Bo74Z5SDG3/?tag=hyprod-20&linkCode=dfo&hvadid=198072472254&hvpos =&hvnetw=g&hvrand=6108957746982655889&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9018948&hvtargid=pla-360267761983&psc=1 (accessed Oct. 05, 2022).

Questions?

