Advisor: Dr. William Murphy Clients: Dr. McLean Gunderson

DEPARTMENT OF Biomedical Engineering UNIVERSITY OF WISCONSIN-MADISON 3D Printed Anatomy Models for Vet Students

Zach Spears (Co-Leader), Lauren Fitzsimmons (Co-Leader), Cora Williams (Communicator), Molly Paras (BSAC), Emily Hutsell (BWIG), and Maggie LaRose (BPAG)

Team Members

From left to right:

Cora Williams (Communicator) Maggie LaRose (BPAG) Molly Paras (BSAC) Lauren Fitzsimmons (Co-Leader) Zach Spears (Co-Leader) Emily Hutsell (BWIG)

Advised by Dr. Bill Murphy Client Dr. McLean Gunderson

Overview

- I. Problem Statement/Background
- II. Client Information/Requirements
- **III.** Product Design Specifications
- IV. Design Options/Design Matrices
- V. Final Design and Future Work
- VI. Acknowledgements/References

Problem Statement

- First year veterinary students learn anatomy of canines
- Cadavers pose ethical, safety, and monetary concerns [1]
- 3D printing as a viable alternative
 - Cheaper, safer, more durable [2]
- 3D printed model of a right canine hindlimb
 - 3D printed bones
 - Accurate muscle depiction and insertion
 - Realistic muscle flexion and extension

Background

- First year veterinary students benefit from hands-on learning
- 3D animal models for teaching demonstrations and experimental processes
- Many models lack important anatomical characteristics:
 - Joints and ability for movement

\$2500 for the one pictured

- Accurate muscle insertions and origins
- Cost

Emily Hutsell

Competing Designs

Figure 2. Axis Scientific Canine Hindlimb with Foot [2] Figure 3. Anatomy Lab Domestic Canine (*Canis lupus familiaris*) Anatomy Model [3] Figure 4. Dr. McLean Gunderson's Preliminary Model

Emily Hutsell

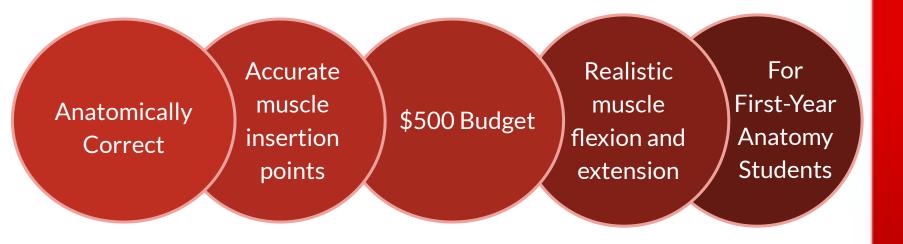


Figure 5. Dr. McLean Gunderson [4]

- Dr. McLean Gunderson
- Researcher and Professor
 - Small and Large Animal Anatomy
- Previously:
 - Senior Instructional Specialist for the Department of Surgical Sciences
 - Veterinarian
- Passion for innovation
 - 3D teaching models

Emily Hutsell

Client Requirements

Product Design Specifications

Must represent canine hindlimb bones and muscles to 95% degree of accuracy according to survey of veterinary students

Should withstand 180° flexion/extension (100 times) with no measurable decrease in attachment force

Must attach/detach at the correct surface areas of real canine anatomy, according to *Miller's Anatomy of the Dog*

May be used by 96 students up to 12 hours a week for 5 years

Design Matrix 1: Muscle Attachment Mechanisms

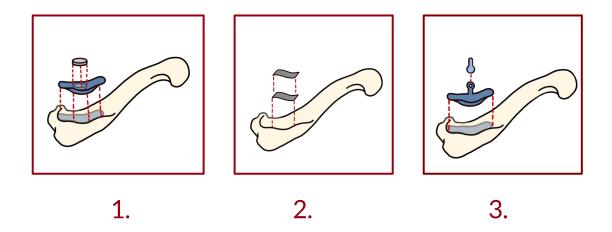
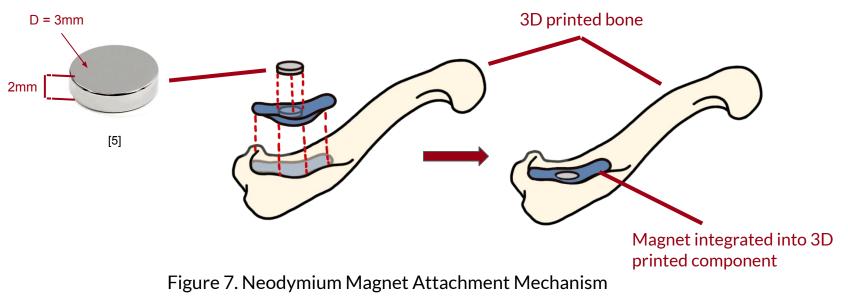



Figure 6. Three Muscle Attachment Mechanisms Design Options

Design 1: Magnets

- 3D printed piece in the shape of actual muscle attachments
 - Magnets in bone and attachment piece

Design 2: Velcro

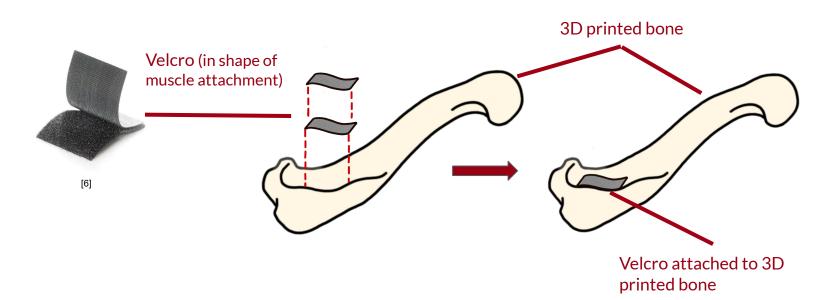


Figure 8. Velcro Strip Attachment Mechanism

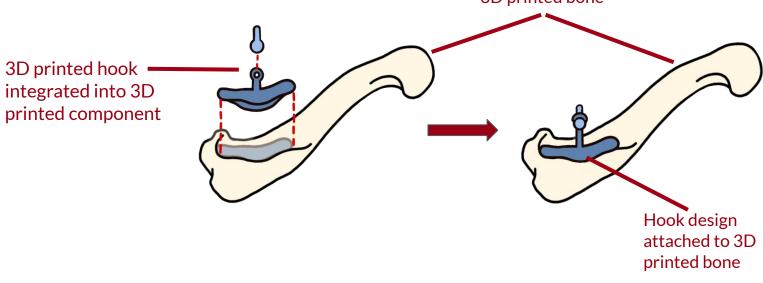


Figure 9. Hook Attachment Mechanism

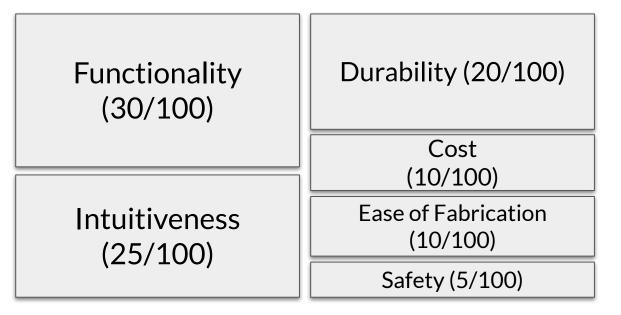
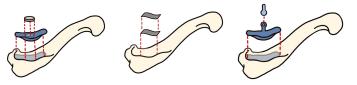



Figure 10. Design Matrix 1 Criteria

Design Matrix 1

Design		Manuala		Malawa			
Criteria	Weight	Magnets		Velcro		Hooks	
Functionality	30	5/5	30	2/5	12	1/5	6
Intuitiveness	25	5/5	25	4/5	20	3/5	15
Durability	20	4/5	16	1/5	4	1/5	4
Cost	10	3/5	6	5/5	10	4/5	8
Ease of Fabrication	10	3/5	6	4/5	8	3/5	6
Safety	5	3/5	3	5/5	5	4/5	4
Total	100.0	86/100		59/100		43/100	

Figure 11. Design Matrix

Design Matrix 1

Design							
Criteria	Weight	Magnets		Velcro		Hooks	
Functionality	30	5/5	30	2/5	12	1/5	6
Intuitiveness	25	5/5	25	4/5	20	3/5	15
Durability	20	4/5	16	1/5	4	1/5	4
Cost	10	3/5	6	5/5	10	4/5	8
Ease of Fabrication	10	3/5	6	4/5	8	3/5	6
Safety	5	3/5	3	5/5	5	4/5	4
Total	100.0	86/100		59/100		43/100	

Figure 12. Design Matrix

Design Matrix 2: Muscle Materials

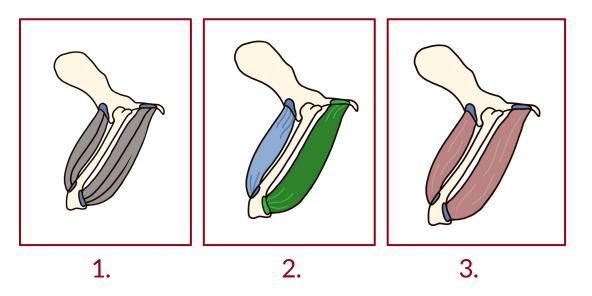
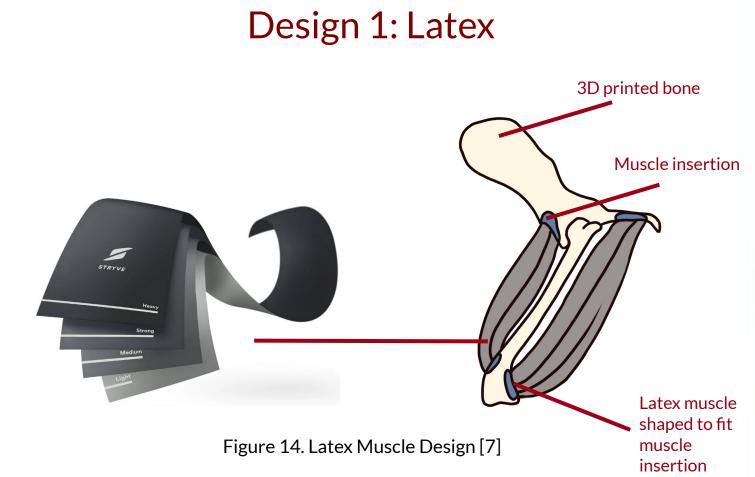



Figure 13. Three Muscle Material Design Options

Design 2: Fabric (Nylon/ Spandex)

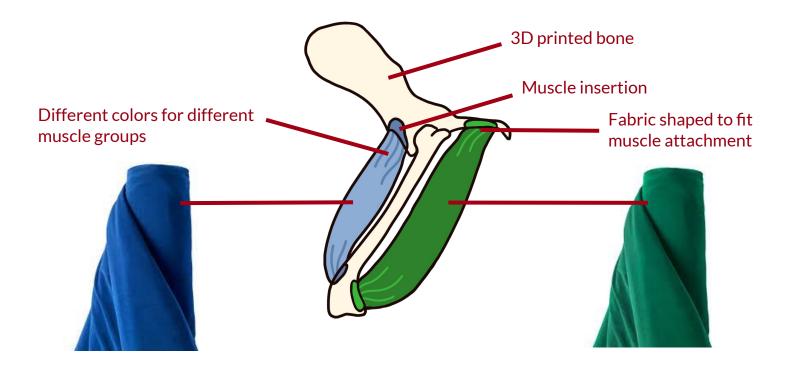
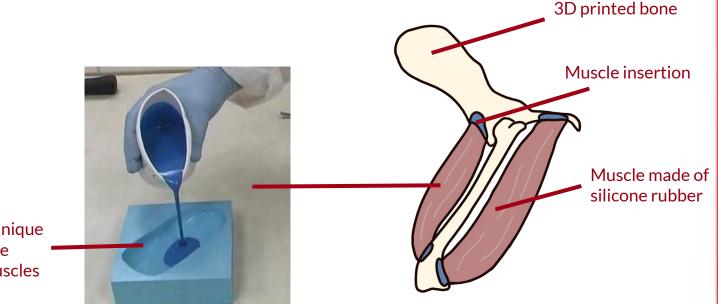



Figure 15. Fabric Muscle Design [8,9]

Design 3: Silicone Rubber (Ecoflex)

• Pour silicone rubber and cure in individual muscle molds

Molding technique used to create individual muscles

Design Matrix 2 Criteria

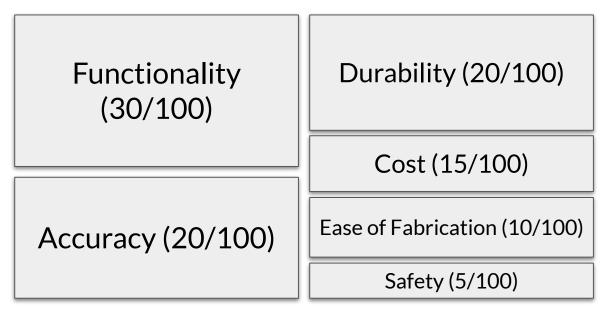


Figure 17. Design Matrix Criteria

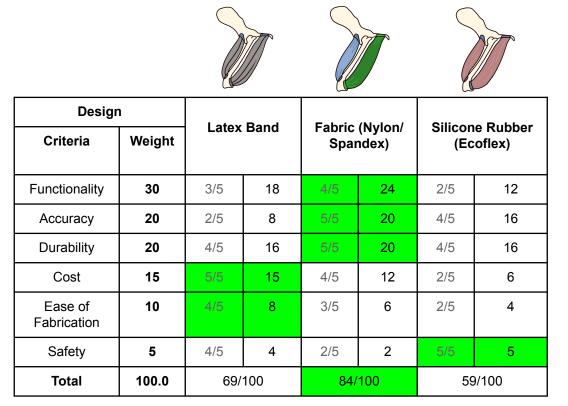


Figure 18. Design Matrix

Design		Latan Dan d		Febrie (ev		Siliaana Dukhar	
Criteria	Weight	Latex Band		Fabric (ex. Spandex)		Silicone Rubber (Ecoflex)	
Functionality	30	3/5	18	4/5	24	2/5	12
Accuracy	20	2/5	8	5/5	20	4/5	16
Durability	20	4/5	16	5/5	20	4/5	16
Cost	15	5/5	15	4/5	12	2/5	6
Ease of Fabrication	10	4/5	8	3/5	6	2/5	4
Safety	5	4/5	4	2/5	2	5/5	5
Total	100.0	69/100		84/100		59/100	

Figure 19. Design Matrix

Final Design: Magnet Integrated Fabric Muscle 3D Model

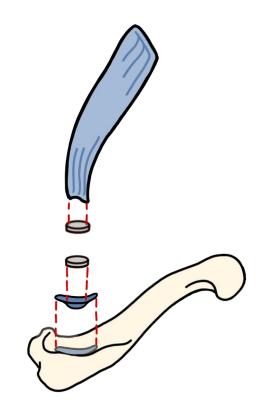


Figure 20. Final Design: Magnet Integrated Fabric Muscle 3D Model

Final Design: Magnet Integrated Fabric Muscle 3D Model

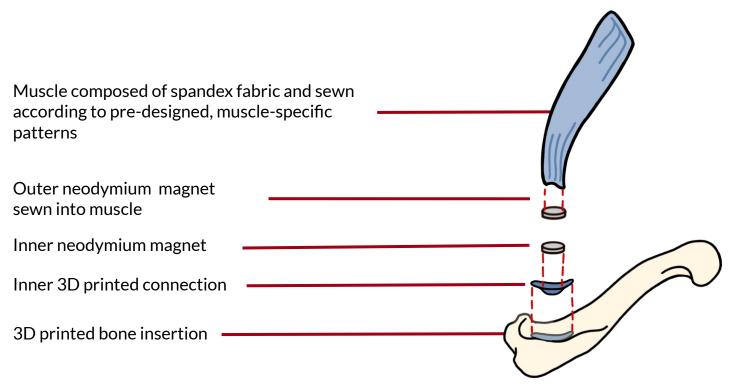
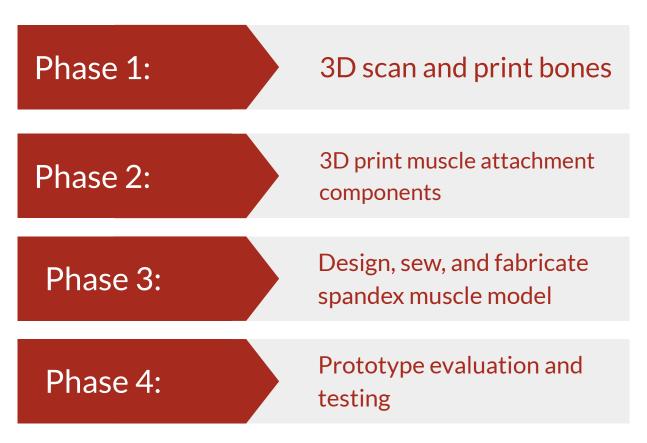



Figure 21. Final Design: Magnet Integrated Fabric Muscle 3D Model

Lauren Fitzsimmons

Future Work

Lauren Fitzsimmons

Acknowledgements

The team would like to thank...

Our advisor, Dr. William Murphy

Our client, Dr. McLean Gunderson

Dr. John Puccinelli & the entire BME Department

DEPARTMENT OF Biomedical Engineering UNIVERSITY OF WISCONSIN-MADISON

Questions

References

[1]S. K. Ghosh, "The practice of ethics in the context of human dissection: Setting standards for future physicians," *Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft*, Nov-2020. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366954/. [Accessed: 06-Oct-2022].

[2]J. V. Chen, A. B. C. Dang, and A. Dang, "Comparing cost and print time estimates for six commercially-available 3D printers obtained through slicing software for clinically relevant anatomical models - 3D printing in Medicine," *BioMed Central*, 06-Jan-2021. [Online]. Available:

https://threedmedprint.biomedcentral.com/articles/10.1186/s41205-020-00091-4. [Accessed: 06-Oct-2022].

[3]"Dog skeleton (canis lupus familiaris), size L, specimen," *1020989 - T300091L - Predators (Carnivora) - 3B Scientific*. [Online]. Available: <u>https://www.3bscientific.com/us/dog-skeleton-canis-lupus-familiaris-size-l-specimen-1020989-t300091I-3b-scientific.p_228_29910.html?utm_source=g</u> <u>oogle&utm_campaign=gmc_feed&gclid=Cj0KCQjwyt-ZBhCNARIsAKH11748IJa8A0OSaTU52_09325GHCB02zrv_rRKA7azG4Uk-CEV_CU7zP8aAmw</u> <u>mEALw_wcB\</u>. [Accessed: 04-Oct-2022].

[4] "Axis Scientific Canine Hindlimb with Foot," Anatomy Warehouse. <u>https://anatomywarehouse.com/axis-scientific-canine-hindlimb-with-foot-a-109194</u> (accessed Sep.20, 2022)

[5] "Anatomy Lab Domestic Canine (Canis lupus familiaris)", Anatomy Warehouse.

https://anatomywarehouse.com/axis-scientific-canine-hindlimb-with-foot-a-109194 (accessed Sep.29, 2022)

[6] "Dr. McLean Gunderson," *UW-School of Veterinary Medicine*. <u>https://www.vetmed.wisc.edu/people/mclean-gunderson/</u> (accessed Sep.29, 2022)

[7] "18x4mm Super Strong Round Disc Neodymium Magnet," Synacorp Technologies Sdn. Bhd. (1310487-K).

http://synacorp.my/v3/en/round-magnets/2103-20x3mm-n52-super-strong-round-disc-neodymium-magnet.html (accessed Oct. 02, 2022).

[8] "VELCRO Brand 4 in. x 2 in. Industrial Strength Strips in Black (2-Pack) 90199," The Home Depot.

https://www.homedepot.com/p/VELCRO-Brand-4-in-x-2-in-Industrial-Strength-Strips-in-Black-2-Pack-90199/202261921 (accessed Oct. 02, 2022).

[9] "Resistance Bands Set," VitalAbo. [Online]. Available: https://www.vitalabo.co.uk/stryve/fitness-bands-set. [Accessed: 04-Oct-2022].

[10] Spandex Stretch 4-Way Fabric Roll 10 yds 58' - Royal Blue," CV Linens. [Online]. Available:

https://www.cvlinens.com/products/10-yds-spandex-4way-stretch-fabric-roll-royal-blue. [Accessed: 04-Oct-2022].

[11]"Spandex Stretch 4-Way Fabric Roll 10 yds 58' - Emerald Green," CV Linens. [Online]. Available:

https://www.cvlinens.com/products/10-yds-spandex-4way-stretch-fabric-roll-emerald-green. [Accessed: 04-Oct-2022].

[12] freemanmfg, "Simple silicone rubber molds (no parting line) - original version," YouTube, 28-Jul-2009. [Online]. Available:

https://www.youtube.com/watch?v=JyQmEG9qmfw. [Accessed: 04-Oct-2022].