

# CT Circulation Phantom

Client: Dr Giuseppe Toia

Advisor: Professor Justin Williams

Team Members: Jack Stevens, Will Stephenson, Sophie Speece, Lucy O'Cull, Emma Flemmer, Bodey Cartier

#### Overview

- Background
- Competing Designs
- Problem Statement
- Product Design Specifications
- Design Alternatives
- Design Matrix
- Future Work
- Acknowledgments

# Background

- Computed Tomography (CT) Phantom
  - Mimics body for a CT Scanner
  - Realistically can be made from anything
  - Purpose is to calibrate scanner or to simulate a biological process [2]

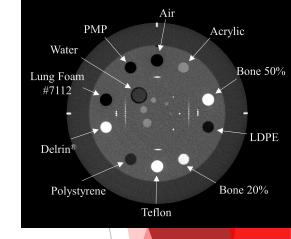



Figure 1. Example of a calibration phantom [1]

# Background

- For use with VA-ECMO Patients
  - Venoarterial extracorporeal membrane oxygenation [3]
  - Lifesaving device
  - Patients with heart failure
  - Often need CT Scans

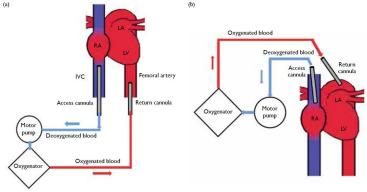
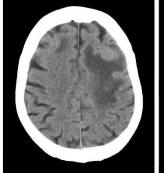




FIG I. Two different configurations of venoarterial extracorporeal membrane oxygenation (VA-ECMO (a) Peripheral and (b) central VA-ECMO Abbreviations  $|VC\rangle$  enterior vena cava:  $|LA\rangle$  = left atrium;  $|LV\rangle$  = left ventricle;  $|RA\rangle$  = right atrium

Figure 2. Basic VA-ECMO model. For our design we are looking only at model (a)

# Background

- ► CT scans require Iodinated Contrast
  - Iodinated Contrast helps make blood visible
  - Needs to be injected directly into the bloodstream
  - Injects in opposite direction to blood flow



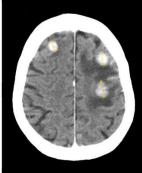



Figure 3. Comparing CT Scans with and without lodinated Contrast.

# **Competing Designs**

- No direct competing designs
- Many static phantom designs
  - They don't simulate blood flow
- A few flow phantoms
  - Simulate blood flow
  - None tackle our problem

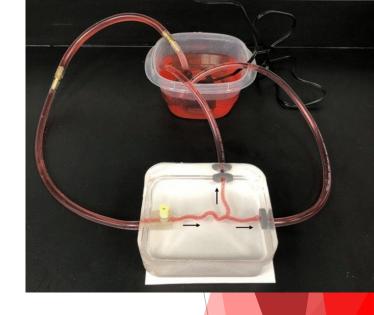



Figure 4. Example of a blood flow phantom [4]

#### **Problem Statement**

- Often, patients on VA-ECMO require diagnostic CT imaging
  - ► This number is increasing [5]
- No current medical standard for imaging these patients
- Will help determine how VA-ECMO effects contrast and imaging
- Improve patient care and outcomes

# **Product Design Specifications**

- CT Phantom with flow capability
  - Right Atrium, Aorta
- ECMO flow circuit
  - Adjustable flow rates (4-6L/min)
- lodine Injector access
  - Measure HU from CT scan
- Cleanable
- Low cost

# **ECMO Circuit Designs**



Figure 5. ECMO Machine [6]

#### **ECMO Machine**

- Entire completedECMO circuit
- ECMO pumping

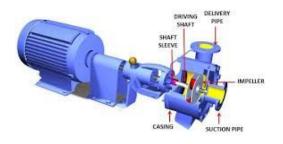



Figure 6. Centrifugal Pump [[7]

## Centrifugal Pump

- Often used in ECMO circuits
- Constant flow



Figure 7. Pulsatile Pump [8]

### Pulsatile Pump

- Mimics a humanpulse
  - Simple Machine

# ECMO Circuit Design Matrix

| VA - ECMO<br>Circuit     |        | ЕСМО М        | achine            | Centrifugal   | l Pump                                                                                                | Pulsatile Pump |                   |
|--------------------------|--------|---------------|-------------------|---------------|-------------------------------------------------------------------------------------------------------|----------------|-------------------|
| Pictures                 |        |               |                   | CENTRIFUGA    | DENOMING DELIVERY SMART PIPE SMART PIPE SMART PIPE SMART PIPE SMART PIPE APPLIES ASSESSMENTEE AL PUMP |                |                   |
| Criteria                 | Weight | Score (max 5) | Weighted<br>Score | Score (max 5) | Weighted<br>Score                                                                                     | Score (max 5)  | Weighted<br>Score |
| Adjustable Flow<br>Rates | 25     | 5             | 25                | 4             | 20                                                                                                    | 3              | 15                |
| Compatibility            | 20     | 3             | 12                | 4             | 16                                                                                                    | 4              | 16                |
| Usability                | 20     | 2             | 8                 | 5             | 20                                                                                                    | 5              | 20                |
| Maintenance              | 15     | 2             | 10                | 4             | 12                                                                                                    | 4              | 12                |
| Safety                   | 10     | 5             | 10                | 3             | 6                                                                                                     | 3              | 6                 |
| Cost                     | 10     | 1             | 2                 | 3             | 6                                                                                                     | 5              | 10                |
| Sum                      | 100    | Sum           | 67                | Sum           | 80                                                                                                    | Sum            | 79                |

Figure 8. ECMO Circuit Design Matrix

# Phantom Designs

#### Closed vs Open Systems

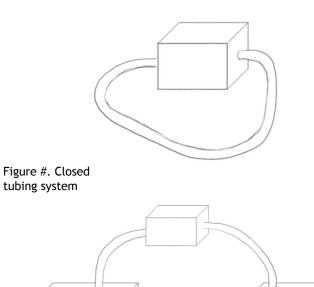



Figure #. Open tubing system

#### Heart Model Designs

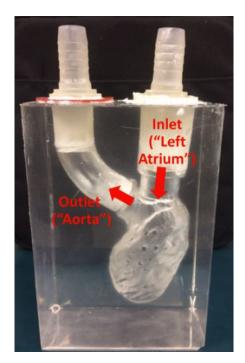



Figure 9. Negative space phantom [9]



Figure 10. Thin wall phantom

# Phantom Design Matrix

| Phantom                |        | Acrylic Box with<br>3D Printed Heart<br>with an Open<br>Circuit |                   | Acrylic Box<br>with 3D Printed<br>Heart with a<br>Closed Circuit |                    | Negative Space<br>Phantom with an<br>Open Circuit |                   | Negative Space<br>Phantom with a<br>Closed Circuit   |                    |
|------------------------|--------|-----------------------------------------------------------------|-------------------|------------------------------------------------------------------|--------------------|---------------------------------------------------|-------------------|------------------------------------------------------|--------------------|
| Pictures               |        | September 1                                                     |                   | T jut to the                                                     |                    | Story States Forder                               |                   | Scory Bildom Phy hanton SCMO Plymp 24cm 5 gal bucket |                    |
| Criteria               | Weight | Score<br>(max 5)                                                | Weighted<br>Score | Score<br>(max 5)                                                 | Weighte<br>d Score | Score<br>(max 5)                                  | Weighted<br>Score | Score<br>(max 5)                                     | Weighte<br>d Score |
| Anatomical<br>Accuracy | 30     | 3                                                               | 18                | 4                                                                | 24                 | 2                                                 | 12                | 3                                                    | 18                 |
| Ease of<br>Fabrication | 25     | 5                                                               | 25                | 5                                                                | 25                 | 2                                                 | 10                | 2                                                    | 10                 |
| Maintenance            | 20     | 5                                                               | 20                | 4                                                                | 16                 | 4                                                 | 16                | 3                                                    | 12                 |
| Duration of single use | 15     | 3                                                               | 9                 | 5                                                                | 15                 | 3                                                 | 9                 | 5                                                    | 15                 |
| Cost                   | 10     | 4                                                               | 8                 | 4                                                                | 8                  | 2                                                 | 4                 | 2                                                    | 4                  |
| Sum                    | 100    |                                                                 | 80                |                                                                  | 88                 |                                                   | 51                |                                                      | 59                 |

Figure 11. Phantom Design Matrix

# Final Design

- Acrylic Water-filledTank
- Fluid Pump
- Top-half of Heart
- Injector Site

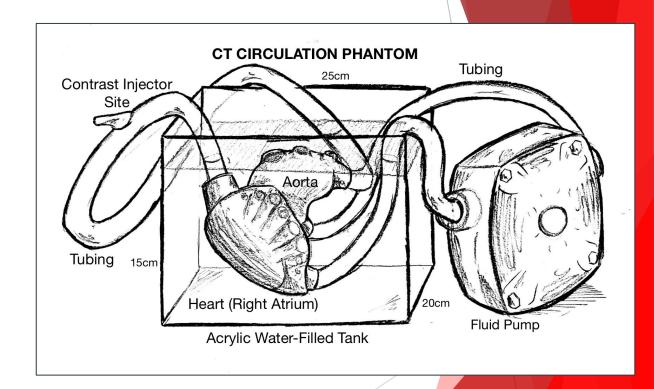



Figure 12. Final design drawing

### **Future Work**

- Procure pump device and assemble components
- Create a 3D phantom model
- Begin preliminary testing

## Acknowledgements

- Dr. Toia Giuseppe Client
- Professor Justin Williams Advisor
- Prof. Alejandro Roldan-Alzate and James Rice
   (UW Cardiovascular Fluid Dynamics laboratory)
- Dr. Timothy Szczykutowicz
- Dr. Meg Lubner
- Dr. Puccinelli





#### References

- [1] Corrado, Philip A., Rafael Medero, Kevin M. Johnson, Christopher J. François, Alejandro Roldán-Alzate, and Oliver Wieben. "A Phantom Study Comparing Radial Trajectories for Accelerated Cardiac 4D Flow MRI against a Particle Imaging Velocimetry Reference." Magnetic Resonance in Medicine 86, no. 1 (July 2021): 363–71. https://doi.org/10.1002/mrm.28698.
- [2] "CFR Code of Federal Regulations Title 21." Accessed September 21, 2023. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?FR=1020.33.
- [3] Lequier, L, D Horton, and R Bartlett. "Extracorporeal Membrane Oxygenation Circuitry." *Pediatr Crit Care Med* 14 (June 2013): S7-12. https://doi.org/10.1097/PCC.0b013e318292dd10.
- [4] Laughlin, Megan E., Sam E. Stephens, Jamie A. Hestekin, and Morten O. Jensen. "Development of Custom Wall-Less Cardiovascular Flow Phantoms with Tissue-Mimicking Gel." *Cardiovascular Engineering and Technology* 13, no. 1 (February 1, 2022): 1–13. <a href="https://doi.org/10.1007/s13239-021-00546-7">https://doi.org/10.1007/s13239-021-00546-7</a>.
- [5] Shen, MD, Jody, Justin Ruey Tse, MD, Frandics Chan, MD, PhD, and Dominik Fleischmann, MD. "CT Angiography of Venoarterial Extracorporeal Membrane Oxygenation." *Standford University School of Medicine, Department of Radiology*, Cardiac Imaging, February 12, 2022, 16.
- [6] "Miracle Machine Makes Heroic Rescues And Leaves Patients In Limbo KFF Health News." Accessed October 5, 2023. https://kffhealthnews.org/news/miracle-machine-makes-heroic-rescues-and-leaves-patients-in-limbo/.
- [7] "Basics of Centrifugal Pumps Know Your Machines Acoem USA," May 19, 2023. <a href="https://acoem.us/blog/other-topics/basics-of-centrifugal-pumps-know-your-machines/">https://acoem.us/blog/other-topics/basics-of-centrifugal-pumps-know-your-machines/</a>.
- [8] "Pulsatile Blood Pumps Pumps." Accessed October 5, 2023.
  <a href="https://www.harvardapparatus.com/pumps-liquid-handling/pulsatile-blood-pumps.html">https://www.harvardapparatus.com/pumps-liquid-handling/pulsatile-blood-pumps.html</a>.
- [9] Corrado, Philip A., Rafael Medero, Kevin M. Johnson, Christopher J. François, Alejandro Roldán-Alzate, and Oliver Wieben. "A Phantom Study Comparing Radial Trajectories for Accelerated Cardiac 4D Flow MRI against a Particle Imaging Velocimetry Reference." *Magnetic Resonance in Medicine* 86, no. 1 (July 2021): 363–71. https://doi.org/10.1002/mrm.28698.

