

# Microscope Low Cost Motorized Stage

Team Members: Tyler Haupert, Julia Salita, Nick Symons, Sawyer Bussey, Zhaoyun Tang Client: Dr. John Puccinelli Advisor: Dr. Joshua Brockman Date: 10/6/2023

#### **Presentation Overview**

- Problem Statement
- Background Information
- Product Design Specifications
- Preliminary Designs
- Design Matrices
- Future Work
- References and Acknowledgements



### **Problem Statement**

- Creation of a device to motorize and automate the inverted fluorescence microscopes in the BME teaching lab.
- Fabrication of replicates must be possible within a \$100 budget.
- This device must be controllable by entering coordinates or moving a joystick, and must include image stitching capabilities.





### Background

- Microscope set up:
  - Nikon Eclipse TI-U
  - Olympus IX71
  - hanging X and Y control knobs
- All available motorized models are:
  - expensive
  - require stage alteration/replacement
- The current microscopes do interface with Nikon elements software, but do not possess image sequencing capabilities.





Figure 1: Nikon TI-U Microscope [1].



Figure 2: Olympus IX71 microscope set up [1].

# **Competing Designs- Julia**

- OpenFlexture project open source
  - Open source
  - 3D printed microscope and stage
  - sub-micron (<0.1 µm) mechanical positioning
  - Approximately \$200 [1].
- ASR series motorized XY microscope stages by Zaber [2]. - market available
  - rebuild/replace stage
  - accurate with in 12 µm
  - cost between \$5,000-\$9,000
- open source 3D printed inverted fluorescence microscope stage.
  - Accuracy:
    - X-  $(5.1 \pm 1.8 \,\mu\text{m}; -4.9 \pm 1.9 \,\mu\text{m})$
    - Y-  $(3.5 \pm 2.2 \,\mu\text{m}; -5.0 \pm 1.1 \,\mu\text{m})$
  - includes all materials list, instructions, software and CAD files [3].
  - altered existing stage







Figure 3: OpenFlexure Microscope and motorized stage [1].



Figure 4: Zaber's ASR series motorized XY microscope stages [2].

Figure 5: Open source 3D printed motorized positioning stage for automated high-content screening microscopy [3].

# **Product Design Specifications**

Performance

- The device should adjust the stage in the x and y directions
- The device should be controllable by arrow

keys or integrated joystick

- Accuracy to 1µm
- Withstand many rotations

#### Size/ Mechanical Integration

- Should not interfere with movement of microscope stage
- Preferably attached to the microscope
- Take up little to no space next to microscope

#### Cost

- Should be affordable
- Total Cost Under \$100

#### Materials

- 3D Printed and laser cut
- Gear materials should be able to withstand friction and heat
- Material should not deform under torque or pressure



### Spur Gear Design



Figure 6: A front view of the Spur Gear Design



# Worm Drive Design

- Tower containing stacked stepper motors-reduce space
- Worm gears extend from motors to spur gears mounted on control knobs
- Includes screw thread locations in 3d print file-stability/strength





Figure 7: The Worm Gear Design.

#### Linear Rails Design



- Not attached to manual knob
- More complicated design
- A lot of unknowns

Figure 8: The Linear Gear Design.



# Design Matrix

Table 1: Design matrix for the evaluation of 3 proposed designs.

| Design Categories<br>(Weight)    | Design 1: Spur Gears |      | Design 2: Worm Drive |     | Design 3: Linear Rails |      |
|----------------------------------|----------------------|------|----------------------|-----|------------------------|------|
| Performance (30)                 | 4/5                  | 24   | 3/5                  | 18  | 5/5                    | 30   |
| Cost (20)                        | 4/5                  | 16   | 3/5                  | 12  | 3/5                    | 12   |
| Mechanical<br>Integration (17.5) | 5/5                  | 17.5 | 4/5                  | 14  | 2/5                    | 7    |
| Ease of Fabrication (15)         | 4/5                  | 12   | 4/5                  | 12  | 3/5                    | 9    |
| Size (12.5)                      | 5/5                  | 12.5 | 3/5                  | 7.5 | 4/5                    | 12.5 |
| Safety (5)                       | 4/5                  | 4    | 4/5                  | 4   | 5/5                    | 5    |
| Total Points:                    | 86                   |      | 67.5                 |     | 75.5                   |      |

### Future Work

- Finalize Spur Gear Design
  - number of gears
  - $\circ$  size of gears
- Fabrication
- Software development
  - allow users to input coordinates
  - image stitching
  - user interface
- Prototyping and testing
  - Accuracy/Resolution of movements





Figure 9: Image stitching example [5].

# Acknowledgements

- Dr. Joshua Brockman, UW-Madison, Department of Biomedical Engineering
- Dr. John Puccinelli, UW-Madison, Department of Biomedical Engineering



### **References:**



# Questions?

