

Department of Biomedical Engineering University of Wisconsin - Madison

Neonatal 22-23-Week Premature Infant Simulation Manikin

October 6, 2023 Client: Dr. Timothy Elgin Advisor: Dr. Pamela Kreeger

Team Members: Claire Kramar, Jodi Lawson, Emma Lu, Maya Nornberg, Molly Wilhelmson, and Jensen Weik

Client Description and Problem Statement

Client

- Dr. Timothy Elgin, DO, MSc
- Division of Neonatology and Newborn Nursery at the UW-Madison Department of Pediatrics

Problem Statement

- Currently no affordable 22-23-week premature infant manikins on the market
- Medical personnel cannot practice resuscitation techniques before real event

Figure 1: 22-Week Premature Infant [1]

Background and Prior Work

22-23-Week Premature Infants

- Survival rate at 22 weeks: <10% [2]
- Survival rate at 23 weeks: 1-64% [2]
- ~ 30.5 cm in length
- Weigh ~ 400-500 g
- Skin is gelatinous, sticky, and can tear easily

Prior Groups' Work

- Both need work on:
 - Addition of limbs for IV access
 - Chest cavity for intubation and compression
 - More realistic skin

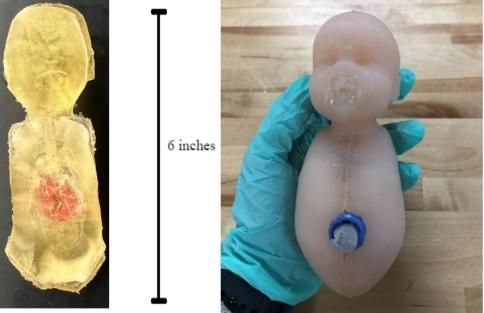


Figure 2: BME Design Spring 2023 Final Prototype

Figure 3: University of Iowa Design Team Prototype [3]

Product Design Specifications

Functional Requirements

- Intubation
- IV access
- Central umbilical line
- Rib cage and chest cavity

Physical Requirements

- Weight: 300 g -500 g
- Length: 30.5 cm
- Accurate texture and thickness of skin

Competing Designs

Premature Anne

- 25 weeks gestation
- Intubation, compressions, IV access, umbilical cord
- Cost: \$2,999 \$6,899

Figure 4: Premature Anne [4]

Micro-Preemie Manikin

- 22-23 weeks gestation
- Intubation, compressions, umbilical cord
- Cost: unknown

Figure 5: Micro-Preemie Manikin [5]

Design Decision #1: Addition of Limbs to the Previous Prototype

Attachment Designs

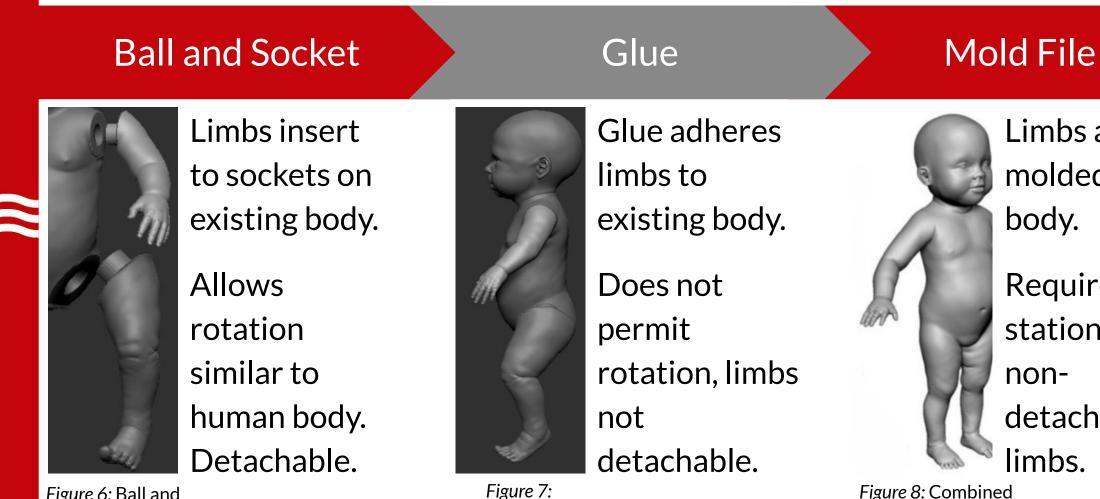
Limbs are

Requires

stationary,

detachable

body.


non-

limbs.

into One File

Design [7]

molded with

Attached by

Glue Design [6]

Figure 6: Ball and Socket Design [6]

Molly Wilhelmson

Design Matrix 1 Criteria

Future Usage	How easy can the manikin be modified	20
Usability	How easy is it to reproduce and operate	20
Durability	How long will the limb stay connected to the body	20
Ease of Fabrication	How easy is it to make	15
Accuracy	How similar do the limbs function compared to human limbs	15
Safety	Will it cause harm to the user	5
Cost	Cost for limbs and possible replacements	5

Molly Wilhelmson

Design Matrix 1: Limb Attachment

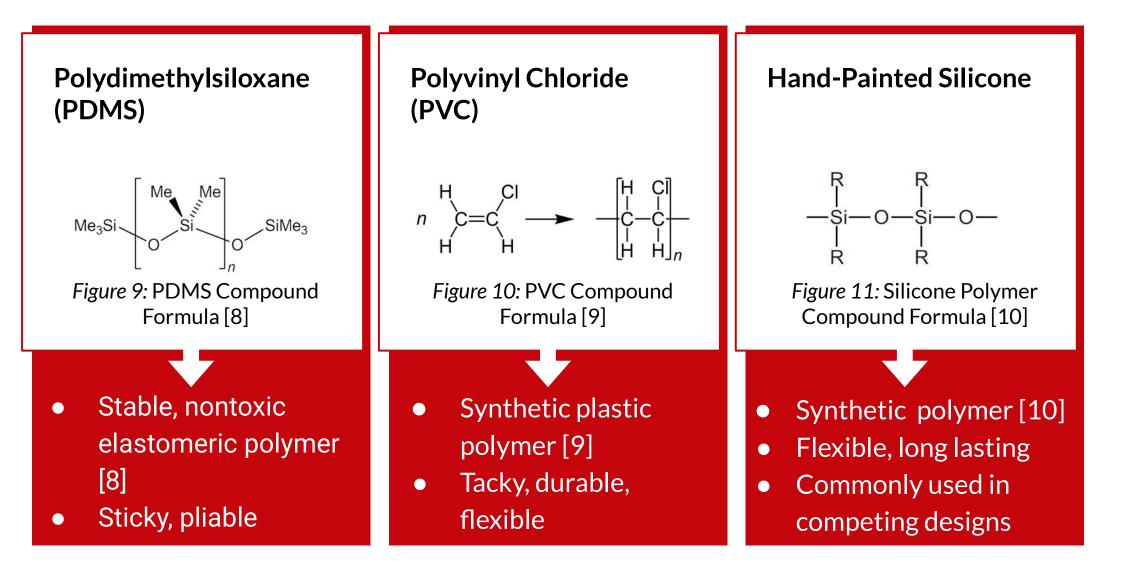
Table 1. Limb Attachment Design Matrix

BME Desjgn

Table 1: Limb Attachment Design Matrix								
Criteria:	Design 1: Ball and Socket		Design 2: Glued		Design 3:		Cho	
					Com	bined w/ Body Mold	Glued Li	
Future Usability (20)	4/5	16	5/5	20	2/5	8		
Reproducibility (20)	3/5	12	4/5	16	5/5	20		
Durability (20)	2/5	8	3/5	12	5/5	20		
Ease of Fabrication (15)	3/5	9	4/5	12	3/5	9		
Accuracy (15)	5/5	15	3/5	9	3/5	9	• Con	
Safety (5)	4/5	4	4/5	4	5/5	5	with	
Cost (5)	4/5	4	4/5	4	5/5	5	wor	
Total: 100	65		77		76		RepDur	

osen Design

Glued Limb Attachment



- Compatible with future work
- Reproducible
- Durable

Design Decision #2: Skin Materials

Skin Material Designs

Jensen Weik

Design Matrix Criteria

Stickiness	Accuracy of skin texture	20
Elasticity	Ability to mold, conform, and stretch	20
Ease of Fabrication	Ability to manufacture initial model and replacement grafts	20
Safety	Toxicity and chemical properties	15
Durability	Ability of material to properly function throughout lifespan	10
Cost	Expenses for initial model and replacement grafts	10
Appearance	Pigmentation capabilities	5

Jensen Weik

Design Matrix 2: Skin Material

Table 2: Skin Material Design Matrix

Criteria:	Design 1: Polydimethylsiloxane (PDMS)		Design 2: Polyvinyl Chloride (PVC)		Design 3: Hand-Painted Silicone		n
Stickiness (20)	5/5	20	4/5	16	4/5	16	
Elasticity (20)	5/5	20	5/5	20	5/5	20	
Ease of Fabrication (20)	4/5	16	4/5	16	4/5	16	
Safety (15)	5/5	15	5/5	15	3/5	9	
Durability (10)	3/5	6	4/5	8	5/5	10	
Cost (10)	2/5	4	5/5	10	5/5	10	
Appearance (5)	4/5	4	5/5	5	5/5	5	
Total	85		90		86		

Chosen Design

Polyvinyl Chloride

- Elastic, inert, cheap
- Plasticizers allow various properties to be modified

Fabrication and Future Work

This Semester

Fabrication Plans

- Improve skin materials
- Replaceable skin patches
- Addition of limbs

- 3D print molds, fill with EcoFlex
- Fabricate skin in wet lab

Future Semesters

- Vein system for IV access
- Intubation and respiration technology
- Fluid pockets

- Electronics
 - Pressure sensors for CPR
 - Pulse
 - Pain sensors

Acknowledgements

We would like to thank:

- Dr. Elgin
- Dr. Kreeger
- Dr. Puccinelli
- BME Department
- MakerSpace
- University of Iowa Design Team (2021)
- Angela Gangstad

References

any quantitative information without references came directly from the client, Dr. Elgin

- [1] J. Howard, "Born before 22 weeks, 'most premature' baby is now thriving," CNN. Accessed: Oct. 05, 2023. [Online]. Available: https://www.cnn.com/2017/11/08/health/premature-baby-21-weeks-survivor-profile/index.html
- [2] A. Cavolo, B. Dierckx de Casterlé, G. Naulaers, and C. Gastmans, "Physicians' Attitudes on Resuscitation of Extremely Premature Infants: A Systematic Review," *Pediatrics*, vol. 143, no. 6, p. e20183972, Jun. 2019, doi: 10.1542/peds.2018-3972.
- [3] E. Williams et. al. "MicroMike". University of Iowa. 2021.
- [4] "Premature Anne," *Laerdal Medical*. https://laerdal.com/us/products/simulation-training/obstetrics-pediatrics/premature-anne/ (accessed Sep. 20, 2023).
- [5] "Lifecast Body Simulation | Surgical Manikin." https://www.lifecastbodysim.com/micro-preemie-manikin (accessed Sep. 20, 2023).
- [6] "Realistic baby Techino parts separately 3d print | 3D Print Model," CGTrader. Accessed: Oct. 02, 2023. [Online].
 Available: https://www.cgtrader.com/3d-print-models/science/astronomy-physics/realistic-baby-techino-parts-separately-3d-print
- "Baby T Pose with 5 Subdivision Levels Quad Mesh | 3D model," CGTrader. Accessed: Oct. 02, 2023. [Online].
 Available: https://www.cgtrader.com/3d-models/character/child/baby-t-pose-with-5-subdivision-levels-quad-mesh
- [8] Miranda *et al.*, "Properties and Applications of PDMS for Biomedical Engineering: A Review," *J Funct Biomater*, vol. 13, no. 1, p. 2, Dec. 2021, doi: 10.3390/jfb13010002.
- [9] "Polyvinyl Chloride PVC," *British Plastics Federation*. https://www.bpf.co.uk/plastipedia/polymers/PVC.aspx (accessed Oct. 02, 2023).
- [10] H. Busch, "Silicone toxicology," Semin Arthritis Rheum, vol. 24, no. 1 Suppl 1, pp. 11–17, Aug. 1994, doi: 10.1016/0049-0172(94)90104-x.

Questions?