Analysis of Insulating Properties of Skin (Rodent)

Team: Caelen Nickel (Leader), Charles Maysack-Landry (Communicator), Tayler Carlson (Co-BWIG), Caden Binger (Co-BWIG), Annika Syslack (BPAG), Bryan Heaton (BSAC)

Client: Dr. Caroline M. Alexander

Advisor: Dr. Justin Williams

October 6th 2022

Overview

- Client Description
- Problem Statement
- Background
- Product Design Specification
- Preliminary Designs
 - Heating Element
 - Temperature Sensor
- Design Matrix
- Future Work
- References

Figure 1: Design team picture

Tayler Carlson

Client Description

- Dr. Caroline M. Alexander
- Professor of Oncology
- Carbone Cancer Center
- Developmental Therapeutics
- Projects in skin modulation of metabolism

Figure 2: UW-Madison Carbone Cancer Center

Problem Statement

There is not a cost effective, accurate device to **measure the conductive heat properties** of rodent skin samples required for oncology research.

Background

- Skin is the largest organ
 - Factor in metabolic rate
- Genes control heat regulation
- Heat transfer is hard to model
 - Ignore evaporative cooling

Competing Solutions

• Infrared Thermometer

Thermtest MP-1

• Used by our client

High precision

Expensive

• Affected by evaporative cooling

Figure 5: Omega infrared camera [3]

 $\label{eq:state} \begin to the state of th$

Charles Maysack-Landry

Ο

Ο

Design Specifications

- Pulse sample with 37°C ± 0.5°C
 - Minimum 5 Hz
- Measure heat transfer
 - Ignore evaporation cooling
 - \circ Within 0.1°C
- Samples are 2 x 4 cm
 - 50-500 microns thick

Heating Element Designs

- Wall Power Design
- Beefcake relay for 120 V

- Arduino microcontroller
 - Thermistor circuit
 - Switch for on/off control

Caelen Nickel

Heating Element Designs

- Battery Power Design
- 12 V DC Adapter

- Arduino microcontroller
 - Thermistor circuit
 - Switch for on/off control

Figure 8: Battery power Fritzing diagram [5]

Temperature Sensor Designs

- Thermistor Design
- Thermistor temperature sensor
- Non-inverting amplifier
 - Gain = 1 + R_T / R3
- Calibration

Figure 9: Flat NTC thermistor [6]

Figure 10: Thermistor circuit LTSpice schematic

Caelen Nickel

Temperature Sensor Designs

- Thermocouple Design
- Require LT 1025

- Thermopile Design
- Thermocouples in series
- High temperature range

Caelen Nickel

Heating Element Design Criteria

- Safety
- Accuracy
- Ergonomics
- Cost
- Ease of Fabrication

Heating Element Design Matrix

Design Categories (Weight)	Wall Power Heating Element		Battery Power Heating Element	
Safety (30)	2/5	12	4/5	24
Accuracy (25)	4/5	20	3/5	15
Ergonomics (20)	3/5	12	3/5	12
Cost (15)	4/5	12	1/5	3
Ease of Fabrication (10)	4/5	8	2/5	4
Total (100)	64		58	

Table 1: Heating Element Design Matrix, with ranking of each design

Annika Syslack

Temperature Sensor Design Criteria

- Accuracy
- Ease of Fabrication
- Cost
- Size
- Safety

Temperature Sensor Design Matrix

Design Categories (Weight)		stor ature Sensor	Thermocouple Temperature Sensor		Thermopile Temperature Sensor	
Accuracy (35)	4/5	28	5/5	35	1/5	7
Ease of Fabrication (20)	4/5	16	3/5	12	2/5	8
Cost (20)	4/5	16	3/5	12	2/5	8
Size (15)	5/5	15	4/5	12	3/5	9
Safety (10)	4/5	8	3/5	6	3/5	6
Total (100)	83		77		38	

Table 2: Temperature Sensor Design Matrix, with ranking of each design

Materials and Testing

• Conductive materials

- Thermistor calibration curve
- Temperature testing
- Heating element testing

Measured Output Voltage(V)

Figure 13: Thermistor circuit calibration curve

Bryan Heaton

What we've learned

- Continued client communication and questions
- Look for variability
- Team communication and planning is key

Acknowledgments

Thank You!

Dr. John Puccinelli Prof. Justin Williams Dr. Caroline M. Alexander

References

- W. Tang, S. Liu, H. Zhu, and S. Ge, "Microtribological and micromechanical properties of the skin stratum corneum," *Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology*, vol. 226, no. 10, pp. 880–886, Oct. 2012, doi: <u>10.1177/1350650112450395</u>.
- [2] "Managing Sweat With Smart Fabric," AZoM.com. Accessed: Oct. 06, 2023. [Online]. Available: <u>https://www.azom.com/article.aspx?ArticleID=21074</u>
- [3] "Industrial Infrared Pyrometer | -20 to 1650°C, 50:1 FOV." Accessed: Oct. 06, 2023. [Online]. Available: https://www.omega.com/en-us/temperature-measurement/noncontact-temperature-nfrared-industrial-thermometers/p/OS310-Series
- [4] "Measurement Platform MP-1 Equipment with TPS and THW." https://thermtest.com/mp-1 (accessed Sep. 21, 2023).
- [5] "Arduino Hardware and Tools." Accessed: Oct. 06, 2023. [Online]. Available: <u>https://arduinogetstarted.com/arduino-hardware-tools</u>
- [6] "About EI Sensor Technologies | Thermistor, RTD, Probe Assembly Manufacturer." Accessed: Oct. 06, 2023. [Online]. Available: <u>https://www.ei-sensor.com/ntc-ptc-thermistor-probes/</u>
- "ZTP-135SR Infrared Temperature Sensor, Thermopile, 80 to 90°, -20 °C to 100 °C, TO-46." Accessed: Oct. 06, 2023. [Online].
 Available: <u>https://www.newark.com/amphenol-advanced-sensors/ztp-135sr/thermopile-ir-sensor-20-degree/dp/84W8932</u>
- [8] "Caroline Alexander," McArdle Laboratory for Cancer Research. Accessed: Oct. 06, 2023. [Online]. Available: <u>https://mcardle.wisc.edu/faculty/caroline-alexander/</u>
- [9] "Best Heat Conductive Metals," Best heat conductive metals, https://www.industrialmetalsupply.com/blog/best-metals-conducting-heat (accessed Sep. 22, 2023).

Bryan Heaton

