

Inconspicuous Ankle Foot Orthosis (AFO) for teen

Team Members

Anya Hadim (Team Leader)

Lucy Hockerman (BSAC)

Presley Hansen (Communicator)

Alex Conover (BPAG)

Grace Neuville (BWIG)

Client

Debbie Eggleston

Advisor

Dr. Brandon Coventry

October 04, 2024

Problem Statement

Project Description:

Design an AFO tailored for young individuals diagnosed with FSHD to facilitate natural gait [1].

AFO Requirements:

- Support dorsiflexion to prevent foot drop
- Prevent inversion
- Discrete, thin, and non-rigid design
- Initial prototype budget: \$300

2

Background/Motivation

Facioscapulohumeral muscular dystrophy (FSHD): genetic disorder causing progressive muscle weakness [2]

Client: Debbie Eggleston

Patient: high school student with FSHD concerned about the visibility of traditional AFOs

3

Competing Designs

- Flexible dynamic AFO
 - Natural gait pattern
 - Reduces Three-Point-System
- Rigid
 - No range of movement
- Jointed
 - Full range of motion
 - Bulky

Figure [1]: Flexible AFO [3]

Figure [3]: Jointed AFO [5]

Figure [2]: Rigid AFO [4]

Design 1:

- Carbon fiber casing
- Circular hinge on the medial side [6]
- Internal spring for dorsiflexion
- Powermesh straps [7]

Figure [4]: Hinge design sketch

Design 2:

- Rotator dial with bungee
- Adjustable velcro straps
- Non-rigid material
 - Neoprene, etc.
- "Athletic"
- Does not support inversion

Figure [5]: Bungee Brace Design Sketch, Medial View

Design 3:

- Carbon fiber body
- Straps made of TPE Filament
 - Thermoplastic Elastomer
 - Flexible and clear
- Angled at 10 degrees
- Medial support from ankle instability

Figure [6]: Strap Brace Design Sketch, Medial View

Design Criteria

Support (20%)

Safety (15%)

Ease of Attachment and Removal (10%)

Cost (5%)

Discreetness (20%)

Flexibility (15%)

Customizability (5%)

Ease of Manufacture (5%)

Updated Design

- Carbon Fiber support added
- Implements ideas from both designs 2 and 3

Figure [7]: Lateral View of Carbon Fiber Support in Solidworks

Figure [8]: Medial View of Carbon Fiber Support in Solidworks

Figure [9]: Right Foot Medial View of Updated Design

Future Work/Expected Difficulties

- Durability of the device
 - Carbon fiber
 - Elasticity of materials
- Weighing functionality versus discreteness
- Testing in Solidworks
- Fabrication Plans
- Future testing

Acknowledgements: Debbie Eggleston Dr. Brandon Coventry

References

[1] Inconspicuous ankle foot orthosis (Afo) for teen. (n.d.). Retrieved October 4, 2024, from

https://bmedesign.engr.wisc.edu/projects/f24/AFO

[2]Facioscapulohumeral muscular dystrophy (Fshd). (n.d.). Muscular Dystrophy UK. Retrieved October 3, 2024, from

https://www.musculardystrophyuk.org/conditions/a-z/facioscapulohumeral-muscular-dystrophy-fshd/

[3] "A Professional Guide for Everyone wearing an Ankle-Foot Orthosis (AFO)," Feb. 24, 2022.

https://alcammedical.com/ankle-foot-orthosis-afo/

[4] Physio-pedia.com, 2024. https://www.physio-pedia.com/images/4/47/GRAFO.jpg (accessed Oct. 04, 2024).

[5] natomicalconceptsinc.com, 2024.

https://www.anatomicalconceptsinc.com/hs-fs/hubfs/AFO_APU.png?width=975&name=AFO_APU.png (accessed Oct. 04, 2024).

[6] "Foundations for Ankle Foot Orthoses," Physiopedia.

https://www.physio-pedia.com/Foundations_for_Ankle_Foot_Orthoses

[7] T. Industry, "What is Mesh Fabric? Different Types of Mesh Fabric," Textile Industry, Oct. 31, 2023.

https://www.textileindustry.net/what-is-mesh-fabric-types-of-mesh-fabric/

Questions?