Stabilizer Device for Intracardiac Echocardiography (ICE) to Assist Structural Heart Interventional Procedures

BME 400 Sara Morehouse, Max Aziz, Noah Hamrin, Kaden Kafar

OUTLINE

- Problem Statement
- Background
- Competing Designs
- Design Specifications
- Design 1: Body Weight Holder
- Design 2: Gooseneck
- Design 3: Sliding Legs
- Design Matrix
- Future Work
- References
- Acknowledgements & Questions

PROBLEM STATEMENT

• Dr. Amish Raval -

client/Interventional Cardiologist

- ICE Catheter instability
- Current method is wet paper towel or have a tech hold it
- Device must hold all types of ICE catheters and adjust it slightly

Figure 1: ICE Catheter [1]

BACKGROUND

Figure 2: 4D ICE Catheter insertion [2]

- Imaging Catheter
- Small, precise and clear images
- Femoral artery to inferior vena cava to see either right or left atria or ventricles [3]
- Patient is awake but local anesthesia

COMPETING DESIGNS

Figure 3: Abbott MitraClip Catheter with Stabilizer [4]

- Catheter held in place with screws
- Non-adjustable angled placement

Figure 4: Edwards EVOQUE Stabilizer, base, and plate [5]

• 3 components

DESIGN SPECIFICATIONS

- Adjustable support fixture for the handle of ICE catheter
- Material must withstand ethylene oxide gas or heat sterilization [6]
- Adjustable height: 75 to 200 mm
- Adjustable angle: 0° to -30° from parallel to the operating table
- Translation: ±75 mm from point of insertion
- Allow for manipulation of the ICE handle controls while in stabilizer
- Compatible with different brands/models
- Manufacturing costs < \$300

DESIGN 1: BODY WEIGHT HOLDER

Pros:

• Everything above sterile

drape

• Reversible for either leg

Cons:

- Longer time to adjust angle
- Cumbersome translation adjustment
- Potentially bulky due to size

DESIGN 2: GOOSENECK

Pros:

- Highly adjustable (length, angle, position)
- Modular
- Low cost (~\$2 per module)

Cons:

• Potential stability issues with long arm

DESIGN 3: SLIDING LEGS

Pros:

 Simultaneous vertical and angular adjustment

Cons:

• Potential issues with security of rubber straps

DESIGN CRITERIA

Sterilizable [25] - ethylene oxide, heat, or gas methods

Usability [20] - ease of adjusting positioning, and ability to operate device controls

Adjustability [15] - range of motion (angular, vertical, translation)

Adaptability [15] - ability to be used for different models / devices

Cost [15] - cost of fabrication of production model

Ease of fabrication [5] - ease of prototype fabrication

Safety [5] - low potential harms to patient from accidents or misuse

DESIGN MATRIX

Criteria	Weight	Design 1		Design 2		Design 3	
		Body Weight Holder		Gooseneck Arm		Sliding Legs	
Sterilizable	25	4 / 5	20	2/5	10	3/5	15
Usability	20	4 / 5	16	3 / 5	12	5/5	20
Adjustability	15	4 / 5	12	5 / 5	15	5/5	15
Adaptability	15	3 / 5	9	4 / 5	12	3/5	9
Cost	15	4 / 5	12	5/5	15	4/5	12
Ease of fabrication	5	3 / 5	3	5/5	5	3/5	3
Safety	5	4 / 5	4	3 / 5	3	5/5	5
Total	100	76		72		79	

FINAL DESIGN

- Sliding Legs
- Refine 3 components:
 - Catheter holder
 - Height/Angle adjustment
 - Mount system
- Incorporate aspects of other

designs

FUTURE WORK

- Implement design changes
- Communicate with client
- Design and build initial

prototypes

• Follow testing cycle

REFERENCES

- [1] "Ultrasound intra-cardiac echo (ICE)," DAIC, https://www.dicardiology.com/channel/ultrasound-intra-cardiac-echo-ice (Accessed Oct. 1, 2024).
- [2] "AcuNav Lumos 4D ice catheter," AcuNav Lumos 4D ICE Catheter Siemens Healthineers USA, https://www.siemens-healthineers.com/en-us/ultrasound/cardiovascular/acunav-lumos-catheter (Accessed Oct. 1, 2024).
- [3] J. Garg et al., "Intracardiac echocardiography from coronary sinus," Journal of cardiovascular electrophysiology, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828028/#:~:text=2%20%2C%203-,Standard%20ICE%20imaging%20includes %20placing%20the%20catheter%20in%20the%20right,%2C%20via%20the%20transseptal%20approach). (Accessed Oct. 1, 2024).
- [4] Abbott, "MitraClip Procedure | Mitral Regurgitation Treatment," MitraClip, 2019. https://mitraclip.com/. (Accessed Oct. 1, 2024).
- [5] "EVOQUE Tricuspid Valve Replacement," Edwards.com, 2014.
 https://www.edwards.com/healthcare-professionals/products-services/evoque-tricuspid-valve-replacement-system. (Accessed Oct. 1, 2024).
- [6] Z. B. Jildeh, P. H. Wagner, and M. J. Schöning, "Sterilization of Objects, Products, and Packaging Surfaces and Their Characterization in Different Fields of Industry: The Status in 2020," physica status solidi (a), vol. 218, no. 13, p. 2000732, Mar. 2021, doi: https://doi.org/10.1002/pssa.202000732. (Accessed Oct. 1, 2024).

THANK YOU!

Questions?

