

Diagnostic EEG System for Viral-induced Epilepsy

October 4th, 2024

Client: Dr. Brandon Coventry Advisor: Prof. Amit Nimunkar Team: Richard Yang, Ellie Dingel, Mark Rice, Elliott Harris

Overview

- Problem Statement & Background
- Client Introduction
- Product Design Specifications
- Design Alternatives
- Design Matrices
- Final Design
- Future Works
- Reference & Acknowledgements

Problem Statement

- 50 million people are affected by Epilepsy worldwide
- Detection of Epilepsy using EEG is expensive
- Cost can range from \$200 \$3000
- Affordable EEG technology
- Create the following components:
 - EEG cap
 - Effective electrode web
 - Amplification/filtering of signal
 - Graphic User Interface

Client Introduction

Dr. Brandon Coventry

- Wisconsin Institute for Translational Neuroengineering
- Post doctoral fellow in the department of Neurosurgery
- Neuromodulation within the thalamocortical circuits
 - Optical tools
 - Artificial intelligence

TECH Collaborators

- Jesse Montoure, M4
 - Neurology
- Tai le, M1
 - Undecided

TECHNOLOGY, ENTREPRENEURSHIP CHANGING HEALTHCARE

Product Design Specification

- Remain in operation for 3-4 years
- Head cap circumference between 50-64
 cm
- Sample at 1kHz with 12-bit resolution
- Able to accommodate 10 different channels
- Cost of complete design under \$100

Figure 2: Example EEG Procedure [2]

Design Alternatives

Product	Channel Count	Sampling Rate (Hz)	Bit Depth	Wireless	Cost (USD)	
Neurosky MindWave	1	512	12	Yes	130	
Muse2	4	256	12	Yes	300	Enti
Emotiv MN8	2	128	14	Yes	400	
Emotiv Insight	5	128	16	Yes	500	
Emotiv EPOC X	14	256	14-16	Yes	1000	
Emotiv Flex Saline	32	256	16	Yes	2000	
Open BCI Complete Kit	16	125	24	No	2500	
Open EEG	2-6	Up to 15.4k	10	No	200-400	

Entire system \$130-\$2500

Head Cap 1 - Store Bought

Figure 3: Store Bought EEG Head Cap

- Variety of Price
- Design for specific Electrodes
- Dependent on external
 - supply chain, price, design

Figure 4: \$500 OpenBCI Head Cap [3]

CONTEC[™]

For Contec KT88

Figure 5: \$16 Contec Head Cap [4]

8

Head Cap 2 - DIY

Figure 6: DIY Head Cap

- Requires Human Assembly
- Low adjustability
- Inconsistent Electrode Placement

Head Cap 3 - Naked Electrodes

- Low cost
- Highly dependent on competence of user
- Human error
- Electrode stability

Figure 7: Naked Electrode Design

Head Cap 4 - 3D Printed

Figure 8: 3D-Printed Head Cap

- Variable Price
- Highly customizable
- Resources to create
- Open mesh

Figure 9: Head Cap Mesh [5]

Mark

11

Figure 10: Blender View of the 3D-Printed Head Cap

Head Cap 4 - 3D Printed

~21g

+supports

Figure 8: 3D-Printed Head Cap

Name (Flexible filament)	Cost/gram	Flexibility (Shore Hardness) Lower is more flexible	Printing Temp (deg C)
TPU	0.3-0.8	60A-77D	210-230
Soft PLA	0.12	92A	190-230
TPA	?	70A-95A	230-250
PEBA	0.16	75A-90A	240-260
TPC	0.052	95A	220-260
TPS	0.08	70A-90A	260-280

Table 2: Summary of Available Flexible Filament

Mark

12

Head Cap Design Matrix

	Store Bought	3D Printed	No Head Cap	DIY	Weights
Cost	0	16	20	16	20
Safety	15	12	9	9	15
Accuracy	14	11	3	6	14
Repeatibility	11	14	3	6	14
Ease of Use	13	10	5	5	13
Durability	12	7	10	5	12
Comfort	7	6	6	4	7
Ease of Fabrication	5	2	5	3	5
Total	77	78	60	53	100

Table 3: EEG Head Cap Design Matrix

Circuit 1 - Single-Channel Analog to Digital Converter (ADC) + MUX

- 10 channels in a MUX
- Instrumentation amp per electrode
- One bandpass filter and level shifter
- Directly connect to Microcontroller (MCU)

Circuit 2 - Multi-Channel ADC

- 10 channels in a multi-channel ADC
- Instrumentation amp, bandpass filter, level shifter for each electrode
- Connect to ADC before MCU

15

Analog Front End Design Matrix

Table 4: Analog Front End Design Matrix

Final Design

- Sampling rate: 1 kHz (50 kHz Max)
- Bandpass: 1-150 Hz
- Maximum Gain: 120 dB
- Electronics Subtotal: \$ 30

Figure 14: Block Diagram of the System

Richard 17

Figure 8: 3D-Printed Head Cap

Future Work

- In progress
 - Create our first prototype both EEG cap and circuit designs
- Semester Goal
 - Device testing protocol to evaluate the prototype
- Stretch Goal
 - Create a program to analyze results
 - Simplify the process of production

Acknowledgement

The team extends sincere thanks to our advisor Prof. Nimunkar and our client Dr. Coventry for their feedback and continuing support! The team would also like to thank the BME 400 administrators and support staff that make this course possible.

Reference

- [1] "Epilepsy," Mayo Clinic, https://www.mayoclinic.org/diseases-conditions/epilepsy/diagnosis-treatment/drc-20350098 (accessed Oct. 3, 2024).
- "Can an EEG detect traumatic brain injury?," Neurodiagnostics Medical P.C., https://neuroinjurycare.com/can-an-eeg-detect-traumatic-brain-injury/ (accessed Oct. 3, 2024).
- [3] OPENBCI, "EEG Electrode Cap Kit." Accessed: Sep. 18, 2024. [Online]. Available: https://shop.openbci.com/products/openbci-eeg-electrocap
- [4] Contec, "CONTEC NEW Standard Adjustable Rubber EEG cap For EEG machine KT88-3200," CONTEC, 2019. https://contechealth.com/products/contec-new-standard-adjustable-rubber-eeg-cap-for-eeg-machine-kt88-3200?variant=4 3685387469029¤cy=USD&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campa ign=sag_organic&srsltid=AfmBOoqbo0xTPKwmFi5n631cKRvb3jyqairhy1mGPAH7mP_eJKc-fyP1e_A (accessed Oct. 04, 2024).
- [5] A. McCann, E. Xu, F.-Y. Yen, N. Joseph, and Q. Fang, "Creating anatomically-derived, standardized, customizable, and three-dimensional printable head caps for functional neuroimaging," bioRxiv, p. 2024.08.30.610386, Jan. 2024, doi: 10.1101/2024.08.30.610386.
- [6] "Durometer Shore Hardness Scale Explained | AeroMarine." Aeromarine Products Inc., 30 July 2020, www.aeromarineproducts.com/durometer-shore-hardness-scale/.