9/27/2024

Print-A-Punch

Client: Prof. Colleen Witzenburg, Mr. Daniel Pearce Team: Cole Miller, Kendra Ohde, Daniel Pies, Colin Bailey, Emmett Jones Advisor: Dr. Meghan Settell

Cole 1

Overview

- Client Description
- Problem Statement
- Background Research
- Competing Designs
- Product Design Specifications
- Preliminary Designs
- Design Matrix
- Final Design
- Conclusion
- Future Work

Client Description

- Daniel Pearce-PhD Candidate studying the effects of heart attacks on heart tissue
- Dr. Colleen Witzenburg-Principle Investigator of Cardiovascular Biomechanics Laboratory

Problem Statement

- In order to measure the material properties of tissues, tissue samples are cut into cruciform shapes to perform biaxial testing.
- Asymmetric samples cause inaccuracy in the results of testing.
- The current process often leads to asymmetric and inaccurate results.
- A new cutting process could be developed to produce more uniform and accurate samples for testing.

Cole 4

Background Research

- 4-12N of force is required to start cutting heart tissue[1]
- Afterwards, a constant application of 2-4N is required
- Plastic portions of the design must comply with ASTM: 638[2]
- Asymmetric Cruciforms lead to undesirable high shear forces[3]

Competing Designs

Print-A-Punch for Uniaxial Testing [4]

- 3D Printed
- Bends razors into dumbbell shape with clamp
- Protective cover over razor blades for safety

Novel Tissue Cutting Apparatus [1]

- Uses 3 linear actuators, 2 load cells, and tissue holding fixture.
- Blade is sterilized after each cut
- 2 actuators control lateral movement, third controls cutting motion

Product Design Specifications / Evaluation Criteria

- Utilize razor blades or biopsy punches
- Able to cut a symmetric cruciform shape of soft tissue
- Must produce uniform, reproducible results
- Must be able to cut through various thicknesses of tissue samples
- Follow ASTM regulations and FDA guidelines
- Easy to set up
- Budget of \$250
- Reusable

Control

Figure^[4]- Cruciform shape

Figure[5]- non symmetric cut (top) and symmetric cut (bottom)

Kendra 7

Design 1: Razor 1-Step

- Uses 1 cutting devices
- Made using 3D printed PLA plastic
- Easy to bend blades due to the screws and the punch shape
- Will cut out a crucifix shape from a circular shape
- Overall shape somewhat inaccurate due to having two separate cuts

Design 1: Evaluation

• Benefits

- Easier to form
- Low cost due to needing fewer razor blades and 3D printed material

• Constraints

- Bending razors
- Needs more than one punch to create the sample
- Doesn't secure sample

Figure [7]: Razor blades (adapted from [5])

Design 2: Razor 2-Step

- Uses 2 separate cutting devices
- First step cuts uniform circle, second step cuts uniform cruciform
- Bends razor blades into precise geometry
- Stamping motion for cut
- 3D printed from PLA

Daniel 10

Design 2: Evaluation

• Benefits

- Accuracy and precision
- Time efficient single punch for all 4 apertures

• Constraints

- Bending razors
- Relatively high cost to manufacture
- Doesn't secure sample to cutting station

Design 3: Biopsy Punch Jig

- Uses biopsy punch instead of razor blades
- Jig has guide holes for biopsy punch each 90° apart to create symmetric cuts
- Circular holder on bottom to secure tissue samples in place
- Created using clear laser cured resin

Colin 12

Design 3: Evaluation

Benefits:

- Easier to set up
- More symmetric samples better stress test results
- Greater reproducibility

Constraints:

- More expensive to maintain
- Less time efficient cuts each hole individually

Figure[11]: Various size biopsy punches (adapted from [7]).

Design Matrix						
			Fazor 2-Sten			
Criteria (weight)	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score
Accuracy/Reproducability (30)	3/5	18	4/5	24	5/5	30
Cost (20)	4/5	15	3.5/5	14	1/5	4
Ease of Use (20)	4/5	15	4.5/5	18	5/5	20
Reusability (15)	3/5	9	3/5	9	2.5/5	7.5
Ease of Fabrication (10)	2.5/5	5	2/5	4	5/5	10
Safety (5)	1/5	1	4/5	4	5/5	5
	Sum	63/100	Sum	73/100	Sum	76.5/100

Conclusion

- Selected Biopsy Punch Jig concept
 - Accuracy of Sample
 - Feasibility of Fabrication for micro-sized sample
 - Simplicity of Operation
- Continue Improving and Revising Design

Figure[9]: CAD model of biopsy jig

Future Work

- Develop a physical prototype using CAD software
- Test the prototype on various tissue samples
- Analyze dimensional results using statistical software

Figure[12]: Cruciform Shaped Tissue Sample

Acknowledgements

Thank you to our clients Dr. Colleen Witzenburg and Daniel Pearce for supporting this project!

Thank you to our advisor Dr. Meghan Settell!

References

[1] Z. Hu, W. Sun, and B. Zhang, "CHARACTERIZATION OF AORTIC TISSUE CUTTING PROCESS: EXPERIMENTAL INVESTIGATION USING PORCINE ASCENDING AORTA," J Mech Behav Biomed Mater, vol. 18, pp. 81–89, Feb. 2013, doi: 10.1016/j.jmbbm.2012.10.017.

[2] "ASTM: 638: Standard Test Method for Tensile Properties... - Google Scholar." Accessed: Sep. 17, 2024. [Online]. Available: <u>https://scholar.google.com/scholar_lookup</u>.

[3] D. P. Pearce, et al., "Asymmetric Sample Shapes Complicate Planar Biaxial Testing Assumptions by Intensifying Shear Strains and Stresses," SSRN. Accessed: Oct. 3, 2024. [Online]. Available: <u>https://papers.ssrn.com/sol3/papers.cfm</u>.

[4] S. J. Nelson, J. J. Creechley, M. E. Wale, and T. J. Lujan, "Print-A-Punch: A 3D printed device to cut dumbbell-shaped specimens from soft tissue for tensile testing," Journal of Biomechanics, vol. 112, p. 110011, Nov. 2020, doi: <u>https://www.sciencedirect.com/science/article</u>.

 [5] Amazon.com: Stanley 11-921 15-pack 1992 heavy-duty utility knife replacement blades : Tools
& Home Improvement. Accessed Oct. 3, 2024. [Online]. Available: <u>https://www.amazon.com/Stanley-15-Pack</u>.

References Continued

[6] "Biopsy punches: Kai Medical," KAI MEDICAL_EN |. Accessed Oct. 2, 2024). [Online] Available: <u>https://www.kaimedical.jp/en/products/dermatology/1005</u>.

[7] Amazon.com: Pakcan disposable biopsy punch - box of 10 - sterile biopsy dermal punch for piercing with protective handle (2 mm): Beauty & Personal Care. Accessed Oct. 3, 2024). [Online]. Available: <u>https://www.amazon.com/PakCan-Disposable-Biopsy-Punch-Protective</u>.