# Microscope Slide Scanner By: Lia Lejonvarn, Amanda Kothe, Hamad AlDhaheri, Xavier Snider



# Outline

- Problem Statement
- Background
- Summary of PDS
- Preliminary Designs
  - Automatic Slide Glider
  - Deconvolution
  - AI Image Improvement
- Design Matrix
- Future Work
- Acknowledgements
- References



Figure 1: Cytology set up [1]



## **Problem Statement**

- Tasked with finding a more efficient or accurate way to scan microscope slides using digital scanning
- Clients current scanner is time consuming and has low quality images
- Updated scanner should enhance the user quality of scanner as well as the images themselves

Clients: Terri Stewart and Joshua Faulkes



# Background



Figure 2: Lika CS2 Scanner

- Client works in a cytology lab
- Slide scanners work by taking many high resolution images of a slide and stitching them together
- Needs high quality images of cells (especially the nucleus)

Main Issues: Slow, Low quality images, Meant for 2d scans [2]



# Summary of PDS

- 10 15 minute per scan
- Clear images/proper stitching
- No interference or damage caused to the slide
- Must work until a new scanner can be purchased
- Scanner must not interfere with other equipment in the lab
- No capital purchase over \$5000



### The Slide Glider



Figure 3: Slide Glider Diagram



### Deconvolution



#### Figure 5: Deconvolution Flow Chart

#### Advantages:

- Removes blurriness.
- Adjusts Z-stack for better image depth.
- Cost effective

#### Disadvantages:

- Computer intensive
- Accuracy
- Create artificial noise in image.



# AI Image Improving



Advantages:

- Clarity of image is greatly improved.
- Cost effective
- Consistent improvement

Disadvantages:

- Speed.
- Computationally demanding.
- Very complex.

Figure 6: AI image improving flowchart



# **Design Matrix**

- Highest Rated Categories: accuracy and feasibility
- Lowest Rated Categories: cost and manufacturability
- Glider scored highest in most, but lowest in cost

| Design Criteria           | Design #1:<br>Automatic Slide<br>Glider |    | Design #2:<br>Deconvolution |    | Design #3: AI Image<br>Improvement |    |
|---------------------------|-----------------------------------------|----|-----------------------------|----|------------------------------------|----|
| Accuracy (30)             | 4/5                                     | 24 | 3/5                         | 18 | 4/5                                | 24 |
| Feasibility (25)          | 3/5                                     | 15 | 3/5                         | 15 | 2/5                                | 10 |
| Useability (20)           | 4/5                                     | 16 | 4/5                         | 16 | 3/5                                | 12 |
| Speed (15)                | 4/5                                     | 12 | 2/5                         | 6  | 3/5                                | 9  |
| Cost (5)                  | 3/5                                     | 3  | 5/5                         | 5  | 5/5                                | 5  |
| Manufacturabilit<br>y (5) | 4/5                                     | 4  | 5/5                         | 10 | 4/5                                | 8  |
| Total (100)               | 74                                      |    | 70                          |    | 68                                 |    |

Figure 7: Design Matrix





Figure 9: Automated stitching process



## **Future Work**

This Semester:

Later Down the Road:

- Decide on materials
- Outline software procedures
- Test design

- Apply deconvolution to scanned slides
- Make design more universal



### Acknowledgements

We would like to thank: Dr. James Trevathan Teri Stewart and Joshua Faulkes Dr. John Puccinelli The Entire BME Department



### References

[1]Corista Marketing, "Optimize your lab's operations with digital pathology," Corista.com, 2017. https://blog.corista.com/corista-digital-pathology-blog/optimize-your-labs-operations-with-digital-pathology (accessed Oct. 03, 2024).

[2] "APERIOCS2 Highly Reliable, Desktop Digital Pathology Scanner." Accessed: Oct. 03, 2024. [Online]. Available: https://www.leicabiosystems.com/sites/default/files/media\_product-download/2023-03/Brochure\_-\_Aperio\_CS2\_Desktop\_Scanner\_-\_EN%20\_95.14550\_Rev.\_A.pdf

[3] "Image upscaling: A comprehensive guide to classical and Ai Techniques," Uni Matrix Zero, https://unimatrixz.com/topics/ai-upscaler/upscaling-methods/ (accessed Oct. 3, 2024).

[4] D. Li et al., "Image Enhancement Algorithm Based on Depth Difference and Illumination Adjustment," Online Library Wiley, https://www.hindawi.com/journals/sp/2021/6612471/ (accessed Oct. 4, 2024).

[5] P. Estrada, "The Art of Image Enhancement: Enhancing image quality with visual transformation techniques," Medium, https://medium.com/@patrishaanneestrada/the-art-of-image-enhancement-enhancing-image-quality-with-visual-transformation-techniques-3af789aa878 (accessed Oct. 3, 2024).

[6] W. Wallace, L. H. Schaefer, J. R. Swedlow, and D. Biggs, "Algorithms for deconvolution microscopy," Digital Image Processing - Algorithms for Deconvolution Microscopy | Olympus LS, https://www.olympus-lifescience.com/en/microscope-resource/primer/digitalimaging/deconvolution/deconalgorithms/ (accessed Oct. 3, 2024).

[7] "Olympus BX41 Clinical Microscope," Microscope Central, 2024. https://microscopecentral.com/products/olympus-bx41-microscope (accessed Oct. 03, 2024).

