

ABSTRACT

- Commercial slide scanners are available but expensive.
- There is need for a cost effective option
- The proposed design uses stepper motors to automate a microscope stage and stitching software to create whole slide images
- The pictures must be of high resolution and scan time must be shortened
- Final design consists of stepper motors and belts used to turn the knobs of a microscope to automatically move the stage
- Aruino code is used to move the stage on the desired path

PROBLEM STATEMENT

- Tasked with finding a more efficient or accurate way to scan microscope slides using digital scanning
- Clients current scanner is time consuming and has low quality images
- Updated scanner should improve image quality
- Reduce the time it takes to scan one slide
- Device must be easily adapted into the lab, taking minimal extra space.

BACKGROUND

- Client works in a cytology lab
- Current slide scanner is time consuming and produces low quality ımages
- The lab needs higher quality images that show the nucleus of cells for teaching and diagnostic purposes
- Client has access to a microscope/camera that is used in the lab to capture high quality images.
- Slide scanners work by taking multiple images of a slide at high resolution and stitching them together [2]

Figure 1: Lika CS2 Scanner [1]

DESIGN CRITERIA

- 10 15 minute per scan
- Clear images/proper stitching
- No interference or damage caused to the slide
- Must work until a new scanner can be purchased
- Scanner must not interfere with other equipment in the lab
- Follow FDA safety guidelines regarding medical related devices
- Software used to store images must be able to keep scanned slides confidential to those with approved access
- No capital purchase over \$5000

Microscope Slide Scanner BME 200/300 Poster Presentation 12/06/2024 LIA LEJONVARN, AMANDA KOTHE, HAMAD ALDHAHERI, XAVIER SNIDER CLIENT: MRS. TERI STEWART ADVISOR: DR. JAMES TREVATHAN

FINAL DESIGN

Final Design Summary

- Stepper motors and belts used to mechanically turn the knobs of microscope stage, moving the stage in the x and y directions
- Brackets used to attach stepper motors to stage
- ToupTek and µManager used to automate stage movement and image collection
- ImageJ used to stitch images together

Figure 3: Fully Assembled Final Prototype

Circuits Summary

- Two stepper motors are attached to drivers to control the x and y axis
- The drivers are connected to 12V of power and to an arduino
- The arduino controls the movement of each stepper motor
- The code allows each motor to turn $\frac{1}{5}$ of a revolution to allow for overlap

- Picture overlap test:
 - motor needed to turn was calculated through observation to allow for approximately 20% of overlap on each edge of the frame
- ImageJ test:
- A picture of a cytology slide was cropped and stitched back together with different amounts of overlap using ImageJ
- was present

Figure 5: Test 2 Stitched Image without Overlap

Figure 2: Mounting Device for Stepper Motors

Figure 4: Circuit Diagram

TESTING

• A slide was allowed to run under the microscope and the amount each stepper

• The stitched photos achieved higher similarity to the original the more overlap

Figure 6: Test 1 Stitched Image without Overlap

2] "Image upscaling: A comprehensive guide to classical and Ai Techniques," Uni Matrix Zero, https://unimatrixz.com/topics/ai-upscaler/upscaling-methods/ (accessed Oct. 3, 2024).

RESULTS

Figure 8: Test 2 Stitched Image with Overlap

Overlap:Similarity Test 1:

- 20%: 0.9931
- 10%: 0.9928
- Test 2:
- 20%: 0.9722
- 10%: 0.7740

DISCUSSION

• Stepper motors were successfully mounted onto microscope stage and retain

- Final code allows for movement in the x and y directions across the whole
- Unable to accomplish automated image stitching
- Issues occurred with integrating multiple softwares
- Improvements could be made to durability and structural integrity of fully

FUTURE WORK

- Connecting the motors with µManager
- Integrate ToupTek with µManager
- Customize ramps controller board to connect with µManager
- Perform testing on image stitching accuracy
- Perform testing on stepper motor accuracy
- Test usability with multiple computers and clients
- Edit arduino code to specifics for microscope slides
- Find new means to attach mounting devices
- Determine more efficient way to capture photos

ACKNOWLEDGEMENTS

We would like to thank our clients Teri Stewart and Joshua Faulkes as well as our advisor Dr. James Trevathan for their support on this project.

REFERENCES

[1] "APERIOCS2 Highly Reliable, Desktop Digital Pathology Scanner." Accessed: Oct. 03, 2024.

https://www.leicabiosystems.com/sites/default/files/media product-download/2023-03/Brochure - A perio_CS2_Desktop_Scanner_-_EN%20_95.14550_Rev._A.pdf