October 4th, 2024

Smart Walker

Advisor Dr. Amit Nimunkar Client Dan Kutschera The Team Nolan BlomWillis (Leader & Communicator) Eva Schiltz (BSAC) Jacob Parsons (BPAG) James Waldenberger (BWIG)

Client Description and Problem Statement

Dan Kutschera

- Physical Therapist
- Acute Stroke clinic in Madison, WI

Problem Statement

• Our team must design a device that works in conjunction with a standard walker that will measure the speed and distance the patient walks and the pressure applied to the walker.

Figure 1. Client Dan Kutschera [1]

Background

- Currently there is no way to have real-time analysis of a patient's progress with a walker.
- Rehabilitation is shifting more to a data driven approach to rehab.
- Current smart walkers are very expensive.

Figure 2. Rehab with a Walker [2]

Competing Solutions

Walking Distance Measuring Device

- No pressure readings
- Not a lot of patient information included
- Just a patent currently

Camino Smart Walker

- Built in boost and brakes
- \$2,500
- Not a clinical walker

tent Application Publication Apr. 14, 2005 Sheet 1 of 3 US 2005/0077345 A1

FIGURE 1

Figure 3. Walking Distance Measuring Device [3]

Figure 4. Camino Smart Walker [4]

Design Specifications

- Device must last 10 years without maintenance needed
- Device will be used for a maximum of 10 patients a day and 5 trials per patient
- Must measure pressure in terms of pounds and speed in terms of miles per hour.
- Must be accurate within 5% of measured value.
- Must support the weight of the user (max of 140kg).

Pressure Sensor 1: Load Sensor

- Detects changes in resistance when stretched
- Used by previous team
- \$4.50 per unit
- 50kg / 110 lbs
- Sensitivity of 1 +/- 0.1 mV/V

Figure 5. SparkFun Load Sensor [5]

Pressure Sensor 2: Piezoresistive Pad

- Similar function to load cell
- Integrated into walker handles
- \$27.82 per unit
- 50 lbs
- 3% linearity error

Figure 6. Flexiforce piezoresistive sensor [6]

Pressure Sensor 3: Capacitive Force Sensor

- Weight pushes plates closer together, changing capacitance
- \$133 per unit
- 100 kg / 220 lbs
- Sensitivity 2.0 +/- 0.2 mV/V

Figure 8. ATO Capacitive Force Sensor [8]

Pressure Sensor Design Matrix

Categories	Load Cell		Piezoresistive Pad		Capacitive Force Sensor	
Accuracy (30)	5/5	30	2/5	12	4/5	24
Ease-of-use (25)	3/5	15	4/5	20	3/5	15
Price (20)	4/5	16	3/5	12	2/5	8
Fabrication (10)	4/5	8	4/5	8	2/5	4
Reusability (10)	4/5	8	2/5	4	3/5	6
Total (100)	77		56		57	

Table 1. Pressure Sensor Design Matrix evaluation

Speed Sensor 1: Accelerometer

- Measures acceleration in x, y, and z
- 3.9 mg/LSB (least significant bit)
 Less than 1 degree of sensitivity
- Low power
 - 23 uA currency supply
- \$17.50 on Digikey

Figure 9. ADXL345 accelerometer board [9]

Figure 10. Accelerometer functional block diagram

Speed Sensor 2: Rotary Encoder

- Incremental Encoder
- Measures rotations of axle
 - Within 0.2 degree accuracy
- Located at wheel
- \$53.17 on Digikey

Figure 11. AMT132S-V rotary encoder with modular axle diameters [10]

Speed Sensor 3: Hall Effect

- Detection of magnetic field
 - Hits "threshold" field and sends
 voltage

voltage

- 2 mT sensitivity
- Located at wheel
- \$0.44 per unit

Figure 13. DRV5023 Hall effect sensor with dimensions in mm [11]

Figure 14. Functional block diagram of Hall effect

Speed Sensor Design Matrix

Categories	Accelerometer		Rotary Encoder		Hall Effect	
Accuracy (30)	5/5	30	5/5	24	3/5	18
Ease-of-use (25)	5/5	25	5/5	25	4/5	20
Price (20)	4/5	16	2/5	8	5/5	20
Fabrication (15)	4/5	12	3/5	9	3/5	9
Reusability (10)	4/5	8	3/5	6	3/5	6
Total (100)	91		72		73	

Table 2. Speed Sensor Design Matrix evaluation

Figure 15. Block diagram of Smart Walker circuitry

Microcontroller & Display

Figure 16. Raspberry Pi Pico [12]

- Raspberry Pi Pico
- 26 GPIO pins
- 133 MHz processing
- Handles input from sensors, calculations, and output to display

Figure 17. Pico Display 2" [13]

- Simple OLED/LCD screen
- 3.3 volts
- Limited to what the Pico can run
 - Low power consumption
 - Available drivers

Preliminary Design

• Sensor choice dictates sensor placement

Figure 18. Two different design options for the Smart Walker

Future Plans

Acknowledgments

Thank you to our advisor Dr. Nimunkar and our client Mr. Kutschera!

References

Figures

[1] Linkedin, https://www.linkedin.com/in/daniel-kutschera-239a8492/ (accessed Oct. 3, 2024)

[2] T. Olson, "Fisioterapeuta Assisting Woman With Walker In Rehab Center," Dreamstime, 2000.

https://es.dreamstime.com/foto-de-archivo-fisioterapeuta-assisting-woman-walker-rehab-center-image70407076 (accessed Oct. 02, 2024).

[3] "US7044361B2 - Walker Distance Measuring Device," Google Patents, https://patents.google.com/patent/US7044361B2/en (accessed Sep. 12, 2024).

[4] Camino Mobility, https://caminomobility.com/ (accessed Oct. 3, 2024).

[5] M. #905039 et al., "Load Sensor - 50kg (generic)," SEN-10245 - SparkFun Electronics, https://www.sparkfun.com/products/10245 (accessed Oct. 3, 2024).

[6] Tekscan, https://www.tekscan.com/flexiforce-loadforce-sensors-and-systems (accessed Oct. 3, 2024).

[7] apec access, "What are capacitive load cells and how do they work?," APEC USA,

https://www.apecusa.com/blog/how-capacitive-load-cells-work/ (accessed Oct. 3, 2024).

[8] "ATO micro compression load cell button type load cell sensor small compression," eBay,

https://www.ebay.com/itm/156317125658?chn=ps&var=457365934039& trkparms=ispr%3D1&amdata=enc%3A1pE0vVylrSFWhFzQISI8l5g 2&norover=1&mkevt=1&mkrid=711-213727-13078-0&mkcid=2&itemid=474ba201792af19fef32b46e97fbd04ab (accessed Oct. 3, 2024). [9] "1231," DigiKey Electronics,

https://www.digikey.com/en/products/detail/adafruit-industries-llc/1231/4990764?utm_adgroup=&utm_source=google&utm_medium =cpc&utm campaign=PMax+Shopping Product Low+ROAS+Categories&utm term=&utm content=&utm id=go cmp-20243063506 adg- a d- dev-c ext- prd-4990764 sig-Cj0KCQjwr9m3BhDHARIsANut04bPGPY5jbZcj8F7XtWGCQXBoB-frsDbSqwsqubekB6EU4K-cDJH8w8aAmD0 EALw_wcB&gad_source=1&gclid=Cj0KCQjwr9m3BhDHARIsANut04bPGPY5jbZcj8F7XtWGC0XBoB-frsDbSqwsqubekB6EU4K-cDJH8w8aAmD0 EALw wcB (accessed Oct. 3, 2024).

References

Figures

[10] Amt132s-v cui devices | sensors, transducers, https://www.digikey.com/en/products/detail/cui-devices/AMT132S-V/10269185 (accessed Sep. 26, 2024).

[11] "DRV5023BIQLPGM," DigiKey Electronics,

https://www.digikey.com/en/products/detail/rochester-electronics,-llc/DRV5023BIQLPGM/13506615?utm_adgroup=Sensors%2C+Transd ucers&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_DK%2BSupplier_Rochester&utm_term=&utm_content=Sensors% 2C+Transducers&utm_id=go_cmp-14247218536_adg-126150562316_ad-539598865099_pla-354083421525_dev-c_ext-_prd-13506615_sig-C j0KCQjwxsm3BhDrARIsAMtVz6N-yy4UZp4uwDTAUtrqTXglxUPhOf2ASsthXy9JFdcGYB1i7nG43XsaAmJwEALw_wcB&gad_source=1&gclid=Cj0 KCQjwxsm3BhDrARIsAMtVz6N-yy4UZp4uwDTAUtrqTXglxUPhOf2ASsthXy9JFdcGYB1i7nG43XsaAmJwEALw_wcB (accessed Oct. 3, 2024). [12] "Raspberry Pi Pico (Non-Wireless)", PiShop, https://www.pishop.us/product/raspberry-pi-pico/ (accessed Oct. 3, 2024) [13] "Pico Display Pack 2.0", PiShop, https://www.pishop.us/product/pico-display-pack-2-0/ (accessed Oct. 3, 2024)

Research

[1] "ISO 11199-3:2005," ISO, https://www.iso.org/standard/41191.html (accessed Sep. 19, 2024).

Questions or Comments?

