Stair Chair Preliminary Presentation

Matthew Sheridan - Team Leader Dan Altschuler - Communicator Cody Kryzer - BSAC Luke Rosner - BWIG Abigail Conners - BPAG

Dr. James Trevathan - Advisor Daniel Kutschera, PT - Client

Problem Statement

- Patients at Encompass need assistance with stairs
- Crutches not feasible; Step by step not feasible
- Inexpensive, human powered stair lift
 - Not comparable to electrical stair lifts
- 3-5 stairs outside
- Patients with short disability window

Background

- Client PT older patients
- Limited other products
 - Too expensive, not flexible
- Step-by-step [1]

Figure 1: Step by Step Final Design

Product Design Specifications

- Client Requirements
 - Up to 26 weeks of frequent use
 - Withstand up to 140 kg
 - Relative mean 1.72 (load/body mass) [2]
 - Free standing unit
- Safety
 - ISO 13485 [3]
 - Seatbelt
- Shelf Life/Life in Service
 - Protection from temperature, salt, snow
- Size
 - 91.4 cm wide staircase [4]

Design 1: Ratchet

- Continuous track
- Ratchets every 5cm or less
- Handbrake down
- Seat will swivel
- Lap belt

Figure 2: Ratchet Design

Design 2: Counterweight

- Assists in ascent
- Controls descent
- Seat will swivel
- Single track
- Adjust weight for each patient

Figure 3: Counterweight Design

Design 3: Hydraulic Pump

- Barbershop chair
- Pump on bar
- Hydraulic provides assistance
- Track system

Figure 4: Hydraulic Pump Design

Design 4: Vertical Lift

• Lift straight up with winch

• Leverage

- Platform
- Ramp hinges until flat
- Wheelchair accessible

Figure 5: Vertical Lift Design

Design Matrix & Final Design								
Design Criteria (Weight)	Design 1: Ratchet		Design 2: Counterweight		Design 3: Hydraulic Pump		Design 4: Vertical-Lift	
Safety (25)	2/5	10	4/5	20	4/5	20	5/5	25
Efficiency/Ease of Use (25)	4/5	20	5/5	25	3/5	15	3/5	15
Adaptability (15)	3/5	12	2/5	6	2/5	6	5/5	15
Ease of Fabrication (10)	2/5	4	4/5	8	3/5	6	4/5	8
Weather (10)	3/5	6	4/5	8	3/5	6	4/5	8
Cost (10)	4/5	8	3/5	6	3/5	6	2/5	4
Weight (5)	5/5	5	1/5	1	5/5	5	1/5	1
Total Score (100)	65		74		64		76	

Matt Sheridan 10

Testing

- Hinge maneuver
- Force required to lift N
 - Test ratio of input and output
- Weight limit- kg
 - Failure Test Factor of Safety
- Stability of structure

Future Work

- Decide mechanism
- Proof of concept
- Scale model

- Full size model
- Adjustable to any set of stairs
- Adjusting to weather conditions

References

[1]"Step by Step: A comprehensive approach to stair climbing assistance," *Wisc.edu*, 2023. <u>https://bmedesign.engr.wisc.edu/projects/f23/stair_assist_bench</u>

[2]R. L. Parrino, K. L. Strand, A. C. Hockman, and J. F. Signorile, "Leg press and chest press strength normative values by half-decades in older persons," *Experimental Gerontology*, vol. 150, p. 111401, Jul. 2021, doi: <u>https://doi.org/10.1016/j.exger.2021.111401</u>.

[3]ISO, "ISO 13485 Medical devices," ISO, 2016. https://www.iso.org/iso-13485-medical-devices.html

[4]"Wisconsin Legislature: SPS 321.04(2)(d)," docs.legis.wisconsin.gov. https://docs.legis.wisconsin.gov/code/admin_code/sps/safety_and_buildings_and_environment/320_325/321/ii/04/2/d