Prevention of Weightlifting Injuries by Barbell Modifications

DEPARTMENT OF Biomedical Engineering

UNIVERSITY OF WISCONSIN-MADISON

Prof. William Murphy Mr. Robert Gold

September 30th, 2024 Jackson Jarrett(Team Leader & BWIG), Luke Schmeling (BSAC), Kai McClellan (Communicator), Gavin Gruber (BPAG)

Background

Figure [1] Shoulder muscle diagram [2]

• Thousands of weightlifting injuries occur every year [3]

- How do injuries occur while lifting?
- What injuries are most common?
- What is the best way to prevent injuries from occurring?
- Fix the Form

Problem Statement

- Thousands of weightlifting injuries occur every year
- Injuries are often caused by an uneven distribution of load on the barbell, leading to the weight lifter favoring one arm over the other.
 [3]
- The team has been tasked with designing a biomedical device that can prevent weight lifting injuries by targeting, identifying, and correcting improper form.

Design Criteria and Specifications

- Primary function is to tell the user when they are at risk of injury because of bad form.
 - Detect when the barbell is uneven vertically or not parallel to the shoulders
 - Track barbell path and compare it to the ideal path
 - Let the user know when the barbell path isn't ideal and how to change it, and when the barbell is uneven. [4]

Competing Designs

- WL Analysis bar path tracker
 - o App
- FLEX by Gym Aware
 - Laser optic sensors
- Bar Sensei
 - Accelerometer

Figure 2. App interface for WL Analysis - bar path tracker $\left[5\right]$

Figures 3 and 4. Flex barbell attachment and Bar Sensei barbell attachment [6][7]

Weightlifting Injury Prevention Designs

Figure 5. Motion System sketch

Motion Capture System

- Camera-based system
- Computations from elbow position

Figure 6. Clip sketch

Weight Clip Sensor

- Motion sensor system
- Replaces weight clips
- tracks bar path

Figure 7. Strap sketch

Wrist Strap Sensor

- Motion sensor system
- Embedded into wrist straps
- Tracks wrist path translates to elbow

Weightlifting Injury Prevention Design Matrix

Design Categories (Weight/100)	Motion System		Barbell Weight Clips		Wrist Straps	
Precision (30)	5/5	30	4/5	24	4/5	24
User Comfort (25)	5/5	25	5/5	25	3/5	15
Ease of Use (20)	2/5	8	5/5	20	4/5	16
Maintenance (10)	3/5	6	5/5	10	4/5	8
Ease of Fabrication (10)	2/5	4	4/5	8	3/5	6
Cost (5)	1/5	1	3/5	3	4/5	5
Total Points:	74		90		74	

Final Design

- Weightlifting Clips
- Arduino Nano [8]
- MPU6050 Accelerometer and Gyroscope [9]
- Breadboard

Figure 6,8. Weight Lifting clip with Technology Housing, Arduino and MPU6050 [7]

Future Work

Fabrication Process

- 3D Printing
- Arduino, MPU6050

Post Repetition Feedback System

- App
 - Displays barbell path
 - Offers correction to prevent injury

Testing

- Functionality of 3D Printed Weightlifting Clip
- Weight Distribution Accuracy
- Bar path line of best fit Accuracy

Acknowledgements

Thank you to Dr. William Murphy and Mr. Robert Gold!

References

[1] L. Noteboom, I. Belli, M. J. M. Hoozemans, A. Seth, H. E. J. Veeger, and F. C. T. Van Der Helm, "Effects of bench press technique variations on musculoskeletal shoulder loads and potential injury risk," *Front. Physiol.*, vol. 15, Jun. 2024, doi: 10.3389/fphys.2024.1393235. Available: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2024.1393235/full. [Accessed: Oct. 03, 2024]

[2] "Shoulder Impingement & Resistance Training: What Powerliffers, Weightliffers and Barbell Strength Athletes Need to Know to Understand Shoulder Injuries," *Progressive Rehab & Strength*, Dec. 23, 2020. Available: https://www.progressiverehabandstrength.com/articles/shoulder-impingement-resistance-training. [Accessed: Oct. 03, 2024]

[3] "New National Study Examines Weight Training-Related Injuries." Available: https://www.nationwidechildrens.org/newsroom/news-releases/2010/03/new-national-study-examines-weight-training-related-injuries. [Accessed: Oct. 03, 2024]

[4] G. Nuckols, "Bench Press Bar Path: How to Fix Your Bar Path for a Bigger Bench," Stronger by Science. Accessed: Sep. 22, 2024. [Online]. Available: https://www.strongerbyscience.com/bench-press-bar-path/

[5] "WL Analysis - bar path tracker - Apps on Google Play." Accessed: Oct. 03, 2024. [Online]. Available: https://play.google.com/store/apps/details?id=com.karolsmolak.wlanalysis&hl=en_US

[6] flexadmin, "FLEXStronger | Velocity Based Training Made Simple," FlexStronger. Accessed: Sep. 19, 2024. [Online]. Available: https://www.flexstronger.com/

[7] "Bar Sensei." Accessed: Sep. 19, 2024. [Online]. Available: http://files.assess2perform.com/barsensei.html

[8] RudraNarayanG, "MPU 6050 Gyro, Accelerometer Communication With Arduino (Atmega328p)," Instructables. Accessed: Oct. 03, 2024. [Online]. Available: https://www.instructables.com/Accelerometer-MPU-6050-Communication-With-AVR-MCU/

[9] "Nano | Arduino Documentation." Accessed: Oct. 03, 2024. [Online]. Available: https://docs.arduino.cc/hardware/nano/

[10] "MPU-6050," TDK InvenSense. Accessed: Oct. 03, 2024. [Online]. Available: https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/

