

Department of Biomedical Engineering

COLLEGE OF ENGINEERING

UNIVERSITY OF WISCONSIN-MADISON

Advanced Amputee Donning Device

Eleanor Hollander, Carly Villa, Sam Kamin, Anna van Riessen, & Ava Hopper

Client: Mr. Daniel Kutschera P.T.

Advisors: Dr. John Puccinelli & Isabelle Peters

Problem Statement

Client

Mr. Daniel Kutschera, P.T.

Motivation

- 2.3 million Americans impacted by limb loss [1]
- o 300-500 new patients every day [2]

Goal

Sleek, portable, and easy-to-use design that simplifies applying a shrinker

Figure 1: Prosthetic Shrinker Donning Tube [3]

Anna

Background

- 55% of limb loss is due to diabetes or vascular disease [4]
 - 45% for traumatic injury
- A shrinker helps prepare the residual limb for a prosthesis
- Takes 3-12 months to receive a final prosthesis [5]
- Older patients & patients with arthritis
 struggle with shrinker application

Figure 2: Below-Knee Amputation with Shrinker Garment [6]

PDS - Client Requirements

- Simplify application of shrinker
 - Minimum manual effort
- Lightweight, ~10lbs
- Portable
- About \$500
 - Flexible price range

Figure 3: Amputation Shrinker Garment [7]

Ava

PDS - Characteristics

Duration

- Withstand 3-12 month recovery period [5]
- o 12 year shelf life of AA batteries [8]

Dimensions

- Average male thigh circumference 53.8 cm
- Average male thigh diameter 17.1 cm
- Existing: 20.3 cm diameter and 30.5 cm height [9]

Materials

- Withstand compressive forces of 30 N 40 N
 [10]
- Nontoxic
- Safety and Standards
 - IEC 60601-1-11 [11]
 - o ISO 10993-1 [12]

Figure 4: Anthropometric Measurements of Male [9]

Figure 5: Load vs. Extension Curve for Shrinker Garment [10]

Competing Designs

- Shrinker Donning Tube
 - Acrylic cylinder [13]
 - Variety of diameters
 - Requires high levels of manual effort
 - Difficult for patients to use

Sam

Figure 6: Using A Shrinker Donner [14]

Figure 7: 8" and 6" Donning Tubes [15]

Sam

Competing Designs

- Liner Donning and Doffing Device-US20080004717A1
- Vacuum between the device and prosthetic liner
- Little or no frictional movement between the liner and the skin
- Airtight end cap
- Valve member to create vacuum [16]

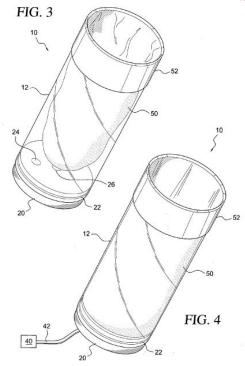


Figure 8: Liner Donning and Doffing Device- US20080004717A1 [16]

Design Ideas: Materials

Figure 9: Nylon [17]

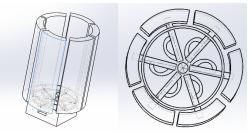
Figure 10: Acrylic [18]

Figure 11: PVC [19]

Criteria (Weight)	Option #1		Option #2		Option #3	
	Nylon		Acrylic		Polyvinyl Chloride (PVC)	
	Raw Score	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score
Biocompatibility (25)	5/5	25	5/5	25	5/5	25
Weight (25)	4.6/5	23	4.6/5	23	4/5	20
Ease of Fabrication (15)	4/5	12	1.67/5	5	4.67/5	14
Durability (15)	4.33/5	13	4.33/5	13	3.33/5	10
Cost (10)	4/5	8	3/5	6	5/5	10
Aesthetics (10)	4/5	8	4.5/5	9	3.5/5	7
Total (100)	89		81		86	

Material Selected:

- Low cost, \$1.80 \$2.30 / kilogram
- 1.15 g/cm^3
- Can withstand up to 12,500 psi in compression
- Tough material requires high speed steel tools [20]


Figure 12: Nylon Plastic Tubes [17]

Design Ideas:

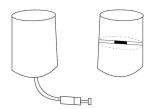

Figure 13: Finger Trap

Figure 14: Expanding Pulley Mechanism

Figure 15: Piston

Criteria (Weight)	Design #1 Finger Trap		Design #2 Expanding Pulley Mechanism		Design #3 Piston		
	Raw Score	Weighted Score	Raw Score	Weighted Score	Raw Score	Weighted Score	
Ease of Use (25)	3.6/5	18	4.8/5	24	4/5	20	
Mechanical Function (20)	3.75/5	14	4.5/5	18	4/5	16	
Safety (20)	4/5	16	4.25/5	17	4.5/5	18	
Ease of Fabrication (10)	4.5/5	9	3/5	6	3.5/5	7	
Size (10)	3/5	6	4/5	8	4/5	8	
Cost (10)	4.5/5	9	3.5/5	7	4/5	8	
Aesthetics (5)	4.5/5	4.5	5/5	5	5/5	5	
Total (100)	76.5	76.5		85		82	

Eleanor

Final Design

- Low user input force compared to alternative designs
- Electronic expansion mechanism
- Activated by a switch
- Operates on replaceable batteries
- Lightweight and portable

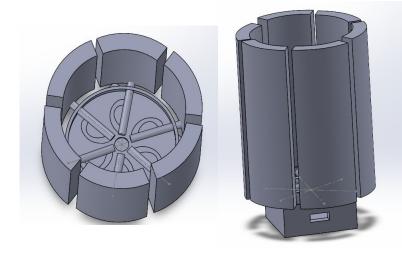


Figure 16: Final Design CAD

Figure 17: DPDT Switch [21]

Testing Plans:

Mechanical Testing:

- MTS testing
 - Compressive strength of machined material
 - Force required to stretch the shrinker

Figure 18: MTS testing Machine [22]

Figure 19: Shrinker application [14]

Functionality Testing:

- Performance expanding to desired diameters
- Ability to hold the shrinker

Future Work

- Order materials
- Build circuit and 3D printed holder
- Machine nylon cylinder
- Fabricate expanding mechanism

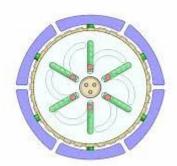


Figure 21: Expanding Mechanism [23]

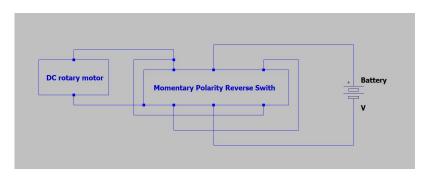


Figure 20: Circuit Schematic

Potential Pitfalls

- Difficulty securing shrinker
- Deformation of nylon pieces with expansion

Acknowledgements

We would like to thank our client and advisor for helping us through the design process thus far:

Client: Mr. Daniel Kutschera

Advisors: Dr. John Puccinelli & Isabelle Peters

References

0

- [1] J. A. Rivera, K. Churovich, A. B. Anderson, and B. K. Potter, "Estimating Recent US Limb Loss Prevalence and Updating Future Projections," *Arch. Rehabil. Res. Clin. Transl.*, vol. 6, no. 4, p. 100376, Dec. 2024, doi: 10.1016/j.arrct.2024.100376.
- [2] "Limb Loss in the U.S.".
- "PROSTHETIC DONNING TUBE 10," Friddles. Accessed: Oct. 01, 2025. [Online]. Available: https://friddles.com/products/prosthetic-donning-tube-10-tube-10
- [4] "Diabetes and Amputation: Why It's Done and How to Prevent It," Healthline. Accessed: Sept. 17, 2025. [Online]. Available: https://www.healthline.com/health/diabetes/diabetes-amputation
- [5] "What to Expect: The Months After Amputation Surgery | Veterans Affairs." Accessed: Oct. 01, 2025. [Online]. Available: http://www.veteranshealthlibrary.va.gov/rehab/occupationaltherapy/LowerLimbAmputation/142,88866 VA
- [6] "Shrinkers," Advanced Prosthetics. Accessed: Oct. 01, 2025. [Online]. Available: https://www.advancedpro.biz/products/prosthetics/shrinkers
- [7] "Stump Shrinkers," Amputee Store. Accessed: Oct. 01, 2025. [Online]. Available: https://amputeestore.com/collections/stump-shrinkers
- [8] "How long will my Energizer® batteries last in their packaging?," Energizer CA. Accessed: Oct. 01, 2025. [Online]. Available:
- http://50.28.12.207/~energizca/about-batteries/battery-faq/lists/battery-faqs/how-long-will-my-em-energizer-em-sub-reg-sub-batteries-last-in-their-packaging/
- [9] M. A. McDowell, C. D. Fryar, C. L. Ogden, and K. M. Flegal, "Anthropometric Reference Data for Children and Adults: United States, 2003-2006: (623932009-001)." 2008. doi: 10.1037/e623932009-001.
- [10] Y. Teyeme, B. Malengier, T. Tesfaye, S. Vasile, W. Endalew, and L. Van Langenhove, "Predicting Compression Pressure of Knitted Fabric Using a Modified Laplace's Law," *Materials*, vol. 14, no. 16, p. 4461, Jan. 2021, doi: 10.3390/ma14164461.
- [11] "IEC 60601-1-11:2015," ISO. Accessed: Sept. 15, 2025. [Online]. Available: https://www.iso.org/standard/65529.html
- [12] "ISO 10993-5:2009," ISO. Accessed: Feb. 03, 2025. [Online]. Available: https://www.iso.org/standard/36406.html
- [13] "Shrinker Donning Tube," Thuasne, LLC. Accessed: Oct. 01, 2025. [Online]. Available: https://www.knitrite.com/shrinker-donning-tube
- "Using an Amputee Sock Donner | Patients & Families | UW Health." Accessed: Oct. 01, 2025. [Online]. Available: https://patient.uwhealth.org/healthfacts/7679
- [15] "Knit-Rite Shrinker Donning Tube," Adaptive Direct. Accessed: Oct. 01, 2025. [Online]. Available: https://adaptivedirect.com/product/knit-rite-shrinker-donning-tube-2/
- [16] S. Asgeirsson, "Liner donning and doffing device," US20080004717A1, Jan. 03, 2008 Accessed: Sept. 17, 2025. [Online]. Available: https://patents.google.com/patent/US20080004717A1/en
- [17] "Nylon Rod, Natural, Cast, Type 6, (10 in x 1 ft) | Curbell Plastics." Accessed: Oct. 01, 2025. [Online]. Available: https://www.curbellplastics.com/product/w02-00923/?srsltid=AfmBOor4JrJe38-UGwRxjlSsGLPidxYn11BMWW6sr0aplEr3PrlM8tRK
- [18] "Clear Cast Acrylic Tubing by Lineal Ft.: TAP Plastics." Accessed: Oct. 01, 2025. [Online]. Available:
 - https://www.tapplastics.com/product/plastics/plastic_rods_tubes_shapes/clear_cast_by_ft/653?srsltid=AfmBOoqTc4tVNvvX9yZdpATv3pPsZkXSwR5accMJG9ABXSUtx57_L2wF
- [19] "PVC Pipes | What You Need to Know About PVC Pipes." Accessed: Oct. 01, 2025. [Online]. Available: https://alkenza.com/blog/pvc-pipes/
- [20] "McMaster-Carr." Accessed: Sept. 25, 2025. [Online]. Available: https://www.mcmaster.com/
- [21] "TWTADE Momentary Polarity Reverse Switch DC 12V 20A Motor Control 6 Pin 3 Position (ON)-Off-(ON) AC 110V-220V Black Boat Rocker Toggle Switch with Wire KCD2-223-JT: Amazon.com: Industrial & Scientific." Accessed: Oct. 01, 2025. [Online]. Available: https://www.amazon.com/dp/B0882M24KP?ref=ppx_yo2ov_dt_b_fed_asin_title&th=1
- [22] "MTS Exceed® Electromechanical Test Systems." Accessed: Oct. 01, 2025. [Online]. Available: https://www.mts.com/en/products/materials/static-materials-test-systems/exceed-electromechanical
- [23] TTAD, "A self-locking expansion mechanism," DIY Craft. Accessed: Sept. 25, 2025. [Online]. Available: https://www.tanerxun.com/self-locking-expansion-mechanism.html

Questions?