Title: Ski jump launch trainer (ski jump)

Date: 10/17/2025 - 10/23/2025

Client: Prof. Walter Block and Dr. Azam Ahmed

Advisor: Prof. Randy Bartels

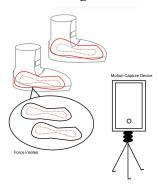
Team:

- Team Leader: Kenneth Sun

- BSAC: Caleb White

- Team Communicator: Presley Stellflue

- BPAG: Sarah Kong


- BWIG: Matthew Niemuth

Problem statement: Develop and prototype a comprehensive training system that will allow young skiers learning to jump direct comparison of their technique to professionals utilizing force plates and motion capture.

Brief status update: The team has continued fabrication of the system. The Velostat is beginning to be understood and the Kinovea software is getting more comfortable. Further materials have been ordered which will be needed for the force plates including an Adafruit ESP32 Feather, more Velostat, a proto board, and electrical tape.

Difficulties / advice requests: Figuring out exactly what sensors to utilize to quantify the more qualitative aspects of ski jumping (IMU's or not). Make sure data collection is smooth and accurate.

Current design:

Summary of Weekly Individual Accomplishments:

- <u>Kenneth Sun</u>: This week I met with Dr.Willie to ask her about how to optimize video capture for 2D video analysis of ski jumping. She mentioned video quality and frames and the need to parallel orientation to subject. Caleb and I then went to the ski hill to get preliminary video data.
- <u>Caleb White:</u> Prototyped with the Velostat to understand its tendencies as a material. Used an Arduino R4 Minima and Arduino IDE software to determine the need to layer the material to increase sensitivity. Ordered several more parts from Adafruit that will be needed for the Force Insoles. Analyzed some of the videos from the ski hill on Kinovea.
- <u>Presley Stellflue:</u> Concluded that we will have to look into the biomechanics of the skier and their spine and skeletal system for the proper function of our design. I researched the Arduino code. Went to the ECB lab to complete lathe training.
- <u>Sarah Kong:</u> 3D-Printed final force sole templates and tested fit in WOmens Size 8 shoes. Researched more about the purpose of force insoles within sports and how to best utilize them for the clients requirements.
- <u>Matthew Niemuth:</u> This week I completed both my Lathe and Mill training for Intro to machining at the ECB. Learned from juniors how to get the arduino code working and analyzing data while connected to the accelerometer.

Upcoming Team Goals: The main goal this upcoming week is to prepare for the Show & Tell on Friday, October 31st. The Team will bring some fabricated components of the design and demonstrate its capabilities. The team will receive feedback from other groups on the fabricated piece and overall design specifications. The team will also attempt to rent professional cameras from the UW library and bring those to a ski jump jamboree this upcoming weekend.

Upcoming Individual Goals:

- <u>Kenneth Sun:</u> Use the video data captured from the athletes to figure out Kinovea capabilities. Work out how to get data of the different angles and figure out if we can get some kinematics data from the motion capture video as well. If not, look into timing gates or IMU for that.
- <u>Caleb White:</u> Fabricate the first prototype of the force insoles for demonstration at Show&Tell. Get used to the new ordered parts and begin implementing them into fabrication and prototyping. Visit the ski hill during the jamboree and collect more footage using the professional UW cameras.
- <u>Presley Stellflue</u>: Use the Arduino kit and get used to the coding that we will need to program it specifically to the skier's usage. Will brainstorm ways that we can take our data from the next visit to the ski hill and make use of it in either the code or in motion capture for analytical results.

- <u>Sarah Kong:</u> Start fabricating the force insoles using the Velostat and Arduino code I previously researched. Visit the ski hill and ensure fit and practicality of the force insoles as well as try and figure out a solution for the WiFi/data processing issue.
- <u>Matthew Niemuth:</u> Go to ski hill and be present for athlete testing of our data collection system and based on how that goes come back and update our system or begin looking into ways to compare data.

Materials and expenses:

Item	Description	Manufa cturer	Mft Pt#	Vendor	Vendo r Cat#	Date	Q T Y	Cost Each	Total	Lin k
Motion Capture System										
	60 inch lightweight									
	tripod with									<u>Am</u>
	adjustable-height legs									azon
	and rubber feet,									<u>Basi</u>
Tripod	compatible with	Amazon	WT35		B005K	10/1/				<u>csTr</u>
with Bag	smartphone adapters.	Basics	40	Amazon	P473Q	2025	2	\$25.99	\$51.98	ipod
										<u>Am</u>
	Smartphone holder,									<u>azon</u>
Tripod	vertical and horizontal	Sharing			B07S8					Trip
Mount	mount adapters for smart	Moment	H-200		TTH3	10/1/				<u>odM</u>
Adapter	phones. Pack of 2	Co.	112	Amazon	4	2025	1	\$6.99	\$6.99	<u>ount</u>
Force Pla										
	TPU 3D-printed									
Force	template for force plate									
Insole	insole made of, 18.3 cm					10/10				
Template	long	N/A	N/A	Wendt	N/A	/2025	1	\$0.72	\$0.72	N/A
	PLA 3D-printed									
Force	template for force plate									
Insole	insole made of, 18.3 cm					10/13				
Template	long	N/A	N/A	Wendt	N/A	/2025	1	\$0.56	\$0.56	N/A
	PLA 3D-printed									
Force	template for force plate									
Insole	insole made of, 20.8 cm					10/15				
Template	long	N/A	N/A	Wendt	N/A	/2025	1	\$0.59	\$0.59	N/A
	Pressure-Sensitive									
	Conductive Sheet					10/16				Velo
Velostat	28cm x 28cm	Adafruit	1361	Adafruit	1361	/2025	1	\$4.95	\$4.95	<u>stat</u>
	Copper foil tape with									Cop
Copper	conductive adhesive					10/16				<u>per</u>
Tape	6mm x 15m	Adafruit	1128	Adafruit	1128	/2025	1	\$5.95	\$5.95	<u>Tap</u>

										<u>e</u>
										<u>Acc</u>
	ISM330DHCX - 6 DOF									<u>eler</u>
Accelero	IMU - Accelerometer					10/16				<u>ome</u>
meters	and Gyroscope	Adafruit	4502	Adafruit	4502	/2025	2	\$19.95	\$39.90	<u>ters</u>
	Pressure-Sensitive									
	Conductive Sheet					10/22				<u>Velo</u>
Velostat	28cm x 28cm	Adafruit	1361	Adafruit	1361	/2025	1	\$4.95	\$4.95	<u>stat</u>
	Adafruit ESP32 Feather									
	Wifi + BT					10/22				ESP
ESP32	microcontroller	Adafruit	5400	Adafruit	5400	/2025	1	\$19.95	\$19.95	<u>32</u>
LIPO	Lithium Ion Polymer					10/22				LIP
Battery	Battery - 3.7V 2500mAh	Adafruit	328	Adafruit	328	/2025	1	\$14.95	\$14.95	
Proto-Boa	PCB Proto-Board					10/22				prot
rd	4cm x 6cm 3-pack	Adafruit	4785	Adafruit	4785	/2025	1	\$2.50	\$2.50	
										Elec
										trica
	SWRT 6 Pack Black				B0DL					1
Electrical	Electrical Tape				NGHJ	10/22				<u>Tap</u>
Tape	0.75in x 66ft 600V	SWRT		Amazon	ZH	/2025	1	\$7.99	\$7.99	<u>e</u>

Timeline:

Tools	Sep					Oct			Nov				Dec	
Task	12	19	26	3	8	17	24	31	7	14	21	28	5	10
Project R&D														
Research	X	X	X	X	X	X	X							
Design			X	X	X	X	X							
Prototyping				X	X	X	X							
Testings														
Deliverables														
Progress Reports	X	X	X	X	X	X	X							
PDS		X												
Design Matrix			X											
Prelim Presentation				X										
Prelim Report					X									
Final Poster														
Final Report														
Meetings														
Client		X												
Advisor	X	X	X	X	X	X	X							
Website														
Update	X	X	X	X	X	X	X							

Filled boxes = projected timeline

X =task was worked on or completed