DEVICE FOR EXTRACTION OF NON-METALLIC INTRAOCULAR FOREIGN BODIES

Client: Dr. Leslie Wei, MD (UW-Madison School of Medicine and Public Health)
Advisor: Dr. John Webster (UW-Madison Dept. of Biomedical Engineering)

Amy Kim [Leader]
Adam Strebel [BWIG & BPAC]
Ruby Phung [Communicator]
Carly Hildebrandt [BSAC]
Client

- Dr. Leslie A. Wei, MD
- Ophthalmology Facial Plastic Surgery
- UW-Madison Hospital
Problem Statement

- *Traumatic intraocular foreign bodies (IOFB)*
 - Smooth, round, non-metallic foreign bodies are difficult to remove
 - Ex. Airsoft pallets

- Currently no specific instrument

- **Goal**: design an intraocular instrument
 - 1. Minimizes enlarging the wound
 - 2. Easily handled with precise movements
 - 3. Successful in removing the IOFB

Retrieved from bbgunreview.com
Background: Human Eye

- IOFB enter through:
 - cornea (65%)
 - sclera (25%)
 - Etc.

- IOFB end up in:
 - Vitreous body (61%)
 - Anterior chamber (15%)
 - Retina (14%)
 - Etc.¹

- Vitreous body
 - Gel-like vitreous fluid
 - Pressurizes eye²

- Retina
 - Optic nerves
 - Sensitive

Figure 1. Anatomy of a human eye³
Background: IOFBs

- **IOFB** = *intraocular foreign bodies*
 - Penetrate into ocular tissue\(^4\)

- Common types - causes:
 - Metal - hammering
 - Plastic - BB guns

- Commonly injured sites
 - Lens and retina\(^5\)

Figure 2. Hammer & Nail\(^6\)
Figure 3. BB gun and plastic BB bullets\(^7\)
Background: IOFB

- Our target:
 - Round, plastic
 - Maximum diameter 8 mm
 - In posterior segment (vitreous body)

Figure 3. Anatomy of removing IOFB⁸

Figure 4. Image of samples of air soft pallets of 6 mm diameter⁹
Procedure: Pars Plana Vitrectomy

Steps

1. Remove vitreous (vitreector)
2. Sever IOFB-vitreous attachment (vitreector)
3. Insert instrument for grasping
4. Grasp IOFB
5. Move IOFB to sclera
6. Extract IOFB

Figure 5. 25 gage-Vitrector designed by Alcon Surgical

Figure 6. Diagram of Pars Plana Vitrectomy: An animated cross-section of the eye including the components used during a vitrectomy procedure
Current devices13

- Currently, no instrument designed specific for removing smooth, round, and non-metallic IOFB

- Commonly used: 25+gage Forceps
 - Various kinds of tips
 - Difficult if non-metallic IOFBs

Figure 7. Examples of currently used forceps with various kinds of tips for IOFB removal. Designed by Alcon Surgical
Product Design Specification

• Size
 • Maximum diameter: 8 mm
 • Length: 32 mm

• Safety
 • Biocompatible
 • Disposable or autoclavable
 • Not harmful to inner-eye
 • Minimize entrance wound

• Ergonomics
 • One-handed operation
 • Comfortable no-slip grip

• Reliability
 • Locking mechanism
Design #1: Ice cream scoop

- Two half-spheres encapsulate foreign body
- Spring and gear mechanism rotates half-sphere
- Autoclavable
 - stainless steel

![Figure 8. Model of an ice cream scoop](image-url)
Design #2: Fish net

- Spring embedded in handle

- Mechanism:
 - Push
 - Compresses the spring
 - Pushes out the net
 - Release
 - Relaxes the spring
 - Pulls in the net

- Disposable
 - Polymer

Figure 10. Image showing the mechanism of Fish Net design

Figure 11. Currently in use Roth Net Retriever for grabbing objects in digestive tract
Design #3: Claw

- Four prongs to grasp foreign body
- Spring-loaded mechanism to release claw
- Relaxing spring tightens claw
- Autoclavable
 - Stainless steel

Figure 11. Example of a claw design currently in use16
Design Matrix

<table>
<thead>
<tr>
<th>Criteria (weight)</th>
<th>Ice Cream Scoop</th>
<th>Fish-net</th>
<th>Claw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability (30)</td>
<td>5 30</td>
<td>4 24</td>
<td>3 18</td>
</tr>
<tr>
<td>Size (25)</td>
<td>4 20</td>
<td>5 25</td>
<td>3 15</td>
</tr>
<tr>
<td>Ergonomics (15)</td>
<td>5 15</td>
<td>4 12</td>
<td>3 9</td>
</tr>
<tr>
<td>Safety (15)</td>
<td>3 9</td>
<td>5 15</td>
<td>3 9</td>
</tr>
<tr>
<td>Feasibility (10)</td>
<td>3 6</td>
<td>5 10</td>
<td>4 8</td>
</tr>
<tr>
<td>Cost Effective (5)</td>
<td>4 4</td>
<td>3 3</td>
<td>5 5</td>
</tr>
<tr>
<td>Total (100)</td>
<td>84</td>
<td>89</td>
<td>64</td>
</tr>
</tbody>
</table>
Summary: Final Design

- Design #2. Fish net
 - Highest relative score
 - Size
 - Safety
 - Feasibility
Future Work

• Material Selection

• Order materials and components needed

• Fabricate a prototype

• Testing
 • Model: cow/pig’s eye
 • Ease of use and controls
 • Successfully removes
 • Does not enlarge the wound
Acknowledgement

- Client: Dr. Leslie Wei
- Advisor: Dr. John Webster
References

Questions?