Indoor Air Quality Monitor

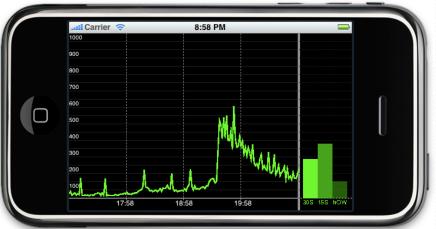
Ben Fleming, Lauren Eichaker, Adam Pala, & Cole Drifka

http://blogs.citypages.com/blotter/nosmoking%255B1%255D.jpg

Client: Dr. David Van Sickle, Department of Population Health Sciences

Advisor: Mr. Peter Klomberg, Department of Biomedical Engineering

Background


- Poor air quality can lead to chronic respiratory diseases
- Client is a medical anthropologist interested in advancing global health
- Indoor tobacco use and biomass fuel burning in developing countries
 - 1.5-2 million deaths/year

www.treehugger.com/20091203-india-cooking.jpg

Background

- Example project: inAir tool
- Project goal: simple, effective, compatible
- Intervention/educational tool
- Implantation: projects in India and Rwanda, Project Quit Tobacco

inAir: Measuring and Visualizing Indoor Air Quality, Sunyoung Kim & Eric Paulos

Client Requirements

• The device must:

- monitor the air quality related to tobacco smoke or biomass fuel burning
- collect data approximately once a minute and this data should be easily downloadable
- function for at least 1 year without breaking down or losing power

Product Design Specifications

• Operational:

- The device will monitor particulate levels
- Our tool will have a simple user interface making use of LEDs to indicate the air quality
- The final product must store data and the data will be easily downloadable via USB
- Electronic components will be powered through a wall outlet with a rechargeable battery as a "backup" power source

Product Design Specifications

(Cont'd)

- Physical:
 - The final product should function between 0 and 60 °C
 - Device dimensions will be approximately 8x10x8 cm and have a mass no greater than 2 kg
 - Our instrument will be made up of various electronics components, including a programmable Arduino ® microcontroller

Product Design Specifications (Cont'd)

- Miscellaneous Specifications
 - Initially only one device (with budget of \$1000)
 - The final construction cost of a typical device should be approximately \$100
 - The customers will be researchers running studies on indoor air quality in India and Rwanda
 - Several similar devices exist on the market, so our device must be unique

Permanent Design Features

- Our client's specifications required a few permanent design features:
 - A sensor for particulate and other smoke related compounds
 - An Arduino [®] Microcontroller
 - The power source

The Sensor

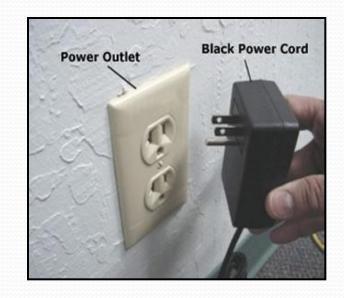
- Key Feature: detects various volatile organic compounds (VOCs) and smoke
- Concentration Range: 10 ppm - 300 ppm

http://www.futurlec.com/Gas_Sensors.shtml

The Microcontroller

Arduino [®] Duemilanove

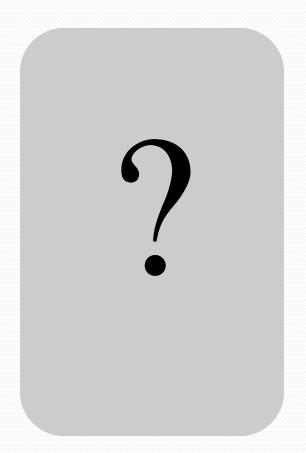
- Key Features
 - 14 digital pins which can be used either as inputs or outputs
 - 6 analog inputs, each with 10 bits of resolution (1024 values)
 - On-board 5 V power supply (i.e. to power the sensor)
 - Can be powered either through USB/computer or externally with a battery/power adapter


http://www.inmotion.pt/store/product_info.php?cPath=10&products_id=56

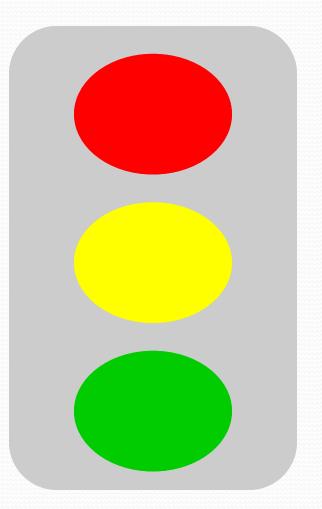
The Microcontroller: Code

```
// Digital LED Output to Analog Sensor Input
// Setup:
// - Potentiometer (i.e. 'sensor") with Outer Leads to '5V' and (Analog/Power) 'Ground', and Wiper to 'Analog In 0'
// - Red LED connected from 'Digital Pin 5' to (Digital) 'Ground' (resistor side to Ground)
// - Yellow LED connected from 'Digital Pin 6' to (Digital) 'Ground' (resistor side to Ground)
// - Green LED connected from 'Digital Pin 7' to (Digital) 'Ground' (resistor side to Ground)
// bv: Indoor Air Ouality Monitor Team (BME 301)
int sensor = 0;// analog pin 0 used to connect the sensor
int sensor val;// variable to read the value from analog pin 0
int LEDpinR = 5;// digital output 1 (red)
int LEDpinY = 6;// digital output 2 (yellow)
int LEDpinG = 7;// digital output 3 (green)
void setup()
{
pinMode(0, INPUT); // sets sensor as an input
pinMode(5, OUTPUT); // sets red LED as an output
pinMode(6, OUTPUT); // sets vellow LED as an output
pinMode(7, OUTPUT); // sets green LED as an output
3
void loop()
{
  sensor val =analogRead(sensor);
                                       // reads the value from the sensor input (i.e. value between 0 and 1023, if using 5V input)
  if (sensor val >= 0 && sensor val < 341)// green LED lights up for values 0 to 340 (from analog sensor input)
  {
   digitalWrite(LEDpinG, HIGH);
   digitalWrite(LEDpinY, LOW);
   digitalWrite(LEDpinR, LOW);
  }
                           <
                                      682)// yellow LED lights up for values 341 to 681 (from analog sensor input)
  else if (sensor val
  {
   digitalWrite(LEDpinG, LOW);
   digitalWrite(LEDpinY, HIGH);
   digitalWrite(LEDpinR, LOW);
  1
  else
                                          // red LED lights up for values 682 to 1023 (from analog sensor input)
   digitalWrite(LEDpinG, LOW);
   digitalWrite(LEDpinY, LOW);
   digitalWrite(LEDpinR, HIGH);
3
```

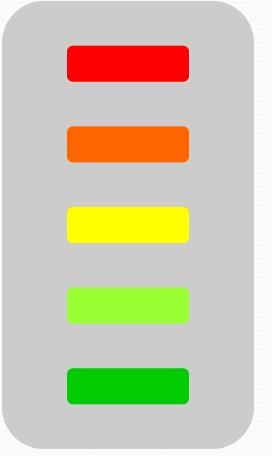
The Power Source


- The power source will consist of two main components:
 - A plug will connect the device to a wall socket power supply
 - An internal rechargeable battery will act as the "back-up" power source during power outages
 - Similar to set-up used in clockradio

http://www.it.utah.edu/services/helpDesk/con nectedhelp/actiontec/images/PlugWall.jpg


Design Aspect: User Interface

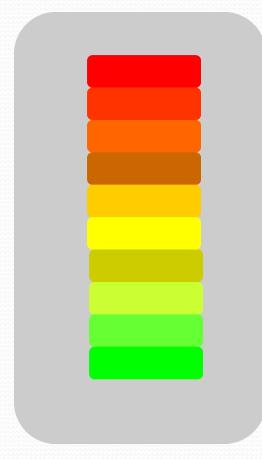
- Options:
 - Stoplight
 - 5 pt. scale
 - 10 pt. scale



Stoplight

- -Simple
- -Red signifies poor air quality
- -Yellow signifies air of moderate contamination
- -Green signifies the relative absence of contaminants

5-Point Scale



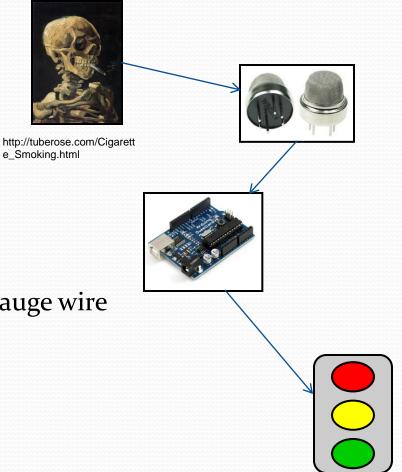
-Intermediate colors allow for more levels of air quality portrayal
-Based on the same color scheme as the stoplight

(Red<Yellow<Green)

10 Point Scale

- -Most complex design
- -Most accurate portrayal of air quality
- -The abundance of leds in different areas might lead to higher incidence of failure

Design Matrix-Display


Design	Complexity	Accuracy	Ease of Construction	Total
Stoplight	10	4	8	22
5-Point Scale	8	7	6	21
10-Point Scale	2	10	2	14

Ethical Considerations

- Intended for education
- Global engineering
- "Outreach project"
- Aim: Present a clear description of "Air Quality"

Final Design

- Stoplight Led Display
- Particulate Sensor
- Arduino[®] Microcontroller
- Power Source
- Various circuit components:
 - Breadboard
 - Black, red, & green solid 22 gauge wire
 - Case box
 - Resistors
 - Toggle switch

Acknowledgements

- We would like to thank the following people for all of their help and advice:
 - Mr. Peter Klomberg
 - Dr. Amit Nimunkar
 - Dr. David Van Sickle
 - The Easter Bunny

Questions?

