Bioreactor Cassette for Autologous Induced Pluripotent Stem Cells

Ali Johnson, Kim Kamer, Elise Larson, Laura Zeitler BME 301 March 5, 2010

Client Dr. Derek Hei *Waisman Clinical Biomanufacturing Facility*

Advisor Prof. Willis Tompkins Dept. of Biomedical Engineering

Collaborators

Sheku Kamara, Vince Anewenter, Issac Reifschneider *Milwaukee School of Engineering*

<u>Overview</u>

- Background
- Design Proposal
- Client Specifications
- Design Concept
- Prototype Possibilities
- Future Work
- Acknowledgments, References

Induced Pluripotent Stem Cells (iPSCs)

Human Embryonic Stem Cell (hESC) ^[3] *Induced Pluripotent* Stem Cell (iPSC)

- Derived from blastocyst ^[5]
- Ethical debate
- Transplant rejection^[4]
- Derived from mature tissue ^[4]
- Pluripotency induced [5]
- Individualized nature

Pertinent Characteristics

Pluripotent^[4]

•Require media supply [6]

Supply growth factorsWash waste products

Chemical signals direct differentiation ^[2]

Autocrine, paracrine factors

Extractables can mimic differentiation factors

Bioreactor System^[2]

Competition and Problems

Current Solutions:

- Static culture
- CLINIcell Cassette

Problems:

http://catalog2.corning.com/Lifesciences/en-US/Shopping/ProductDetails.aspx?productid=3814%28Lifesc iences%29&categoryname=

- Emerging field commercially underdeveloped
- Need to optimize stem cell growth, conditions, and monitoring
- Samples cannot share media

<u>Design Proposal</u>

Design a perfusion cassette system to culture several independent samples of iPS cells.

Specifications

- •Optimize growth area
- Undifferentiated growth (no extractables)
- •Gas-impermeable growth plates
- •Optically transparent
- •Monitor pH
- •Minimize media use

Design Concept

- Recessed frame
- Input, output valves for media exchange
- •Transparent plate top
- Polystyrene cell plate inserted, secured from bottom
 Silicone gasket prevents leaks or contamination

Flow Considerations: Geometry

- 2 mm thickness
- > 23 cm x 15 cm cell growth plate
- Want consistent flow
- Minimize media use

<u>Basic Shapes</u>

- Rectangle
 - Similar to existing designs
- Diamond
 - Direct flow outward
- Ellipse
 - No corners

Complicated Shapes

- Fan with Straighteners
 Straightens flow after directed outward
- Fan with Guides
 - Evenly directs flow

<u>CFD Analysis:</u> <u>Contours</u>

CFD Analysis: Contours

CFD Analysis: Streamlines

Design Matrix

	Weight		$\langle \rangle$			
Fluid Analysis	0.60	4	7	6	8	9.5
Feasibility for prototype	0.15	10	9	4	9	9
Mass- Production	0.05	9.5	9	9	9	9
Maximize Cell Production	0.10	10	9	9	10	10
Efficient Media Use	0.10	8	8	8	7	7
	Score	6.18	7.70	6.35	8.30	9.20

Scale: 1 - 10 (1 poor, 10 excellent)

<u>Future Works</u>

- Further optimize geometry using CFD
- Finalize material selection
- Fabrication and testing
 - Dye
 - Salt gradient
 - Stem cell growth
- Output pH
- Flow adjustment at input

<u>Acknowledgements</u>

- Dr. Hei, Bill Kreamer, Kyle Ripple, Julie Johnson
- Professor Chesler, Professor Shedd, Cassy Schuette, Dr. Alejandro Roldán-Alzate, Pradeep Vukkadala
- Sheku Kamara, Vince Anewenter, Issac Reifschneider
- Professor Willis Tompkins

<u>References</u>

- [1] Corning (2010). "Corning® Ultra-Low Attachment 75cm² Rectangular Canted Neck Cell Culture Flask with Vent Cap (Product #3814)" Corning: Life Sciences . http://catalog2.corning.com/Lifesciences/en-US/Shopping/ProductDetails.aspx?productid=3814%28Lifesciences%29&categoryname=
- [2] Hei, Derek (2010). "Bioreactor Perfusion Design" *Waisman Clinical Biomanufacturing Facility, University of Wisconsin-Madison.*
- [3] KU Medical Center (2010). "Stem Cell Research 101" University of Kansas Medical Center. http://www.kumc.edu/stemcell/images.html
- [4] MedicineNet (2010). "Definition of a stem cell" *MedicineNet* http://www.medicinenet.com/stem_cells/article.htm

- [5] NIH (2010). "Stem Cell Information" National Institutes of Health. http://stemcells.nih.gov/info/basics/basics1.asp
- [6] Sigma-Aldrich (2010) "Bioreprogramming" *Cell Culture: Sigma-Aldrich. http://www.sigmaaldrich.com/life-science/stem-cell-biology.html*

Questions?