

# Metacarpophalangeal Joint Replacement

March 5, 2010

#### **Team Members:**

Team Leader- Hallie Kreitlow BWIG- Amanda Feest BSAC- Nate Cira Communicator- Kenny Roggow

Advisor- Professor Naomi Chesler, UW Department of Biomedical Engineering Client- Dr. Ramzi Shehadi, St. Mary's Hospital



#### Overview

- Background
- Problem statement
- Previous design
- Midsemester progress
- Current design
- Future work

★This presentation is not to be considered a public disclosure★



### Background

#### Metacarpophalangeal (MCP) joint







[Kleinert, HE. et al. 2005]



#### **Problem Statement**

- Design an MCP joint replacement that:
  - Does not require collateral ligaments or volar plate
  - Has an anatomically correct range of motion
  - Has a lifespan of 10 years
  - Is capable of osteointegration
  - Does not fail at the bone-implant interface



## Interlocking Groove





## Finite Element Analysis





▶ UHMWPE yield strength: 19.6 MPa →





## Comparison of Designs

**Interlocking Groove Design** 

Patent # 5,938,700







### Midsemester Progress

- Contacted patent owner
  - Next Step: Premarket Approval (PMA)
- Considered artificial ligaments
  - Natural
  - Synthetic
  - Wire
- Brainstormed new designs
  - Barbell Linkage
- Reconsidered old designs
  - Rockin' Hinge



## Barbell Linkage

#### **Full Flexion**

#### **Full Extension**









## Rockin' Hinge





### Range of Motion

#### **Full Flexion**

#### **Full Extension**





## Rockin' Hinge



| Range of<br>Motion   | Interlocking<br>Groove | Rockin'<br>Hinge | Functional |
|----------------------|------------------------|------------------|------------|
| Flexion              | 90°                    | 90°              | 90°        |
| Extension            | 45°                    | 20°              | 20°        |
| Maximum Ad/abduction | 10°                    | 29°              | 32°        |



### Materials



#### Materials

- CoCr
  - Metacarpal component
- ▶ Delrin®
  - Phalangeal component
  - ▶ Pin



### Failure Mode

- Fails at articulating surface
  - Preserves osteointegration
  - Has replaceable joint mechanism





### **Future Work**

- Optimize SolidWorks model
- Perform finite element analysis
  - Failure mode
- Fabricate out of aluminum and Delrin®
- Implant into cadaveric hand
  - Ease of implantation
  - Range of motion



### Acknowledgements

- Professor Naomi Chesler (advisor)
- Dr. Ramzi Shehadi (client)
- Professor Heidi Ploeg and students
- Professor Darryl Thelen
- Dr. Curt Irwin
- Professor Ed Bersu
- Professor Tim Osswald
- Dr. Bill Checovich
- Professor Jay Samuel



#### References

- 1. Pylios,T and Shepard, DT. A new metacarpophalangeal joint prosthesis. Proceedings of the World Congress on Engineering. 2: 2007.
- 2. Modified from: Kleinert, HE, Sunil, TM. Use of volar plate for reconstructing the radial collateral ligament after metacarpophalangeal arthroplasty of fingers in rheumatoid arthritis: Surgical technique. *J Hand Surg.* 2005; 30(2): 390-393.