Sensory Abnormalities

Mason Jellings, Justin Gearing, Jamon Opgenorth, Daniel Miller
Client: Dr. Backonja
Advisor: Professor Amit Nimunkar

Abstract

Our client, Dr. Backonja, is a neurologist at the UW Hospital. He commonly works with patients that have sensory abnormalities including lack of sensation and hypersensitivity. In order to help determine the effectiveness of treatment regimens, Dr. Backonja monitors the surface area of affected skin on his patients. A previous semesters design team developed an algorithm in MATLAB that
calculated surface area using several IR cameras and an infrared LED calcuated surface area using several limeameras and an infrared LED being utilized.
This semester, we have worked two different systems to help him track affected surface area more conveniently. Currently, our client traces the shapes of the affected area onto a sheet of graph paper and manually counts the squares to determine the area. To help with this process, we have developed an image analysis program that calculates
the surface area in a bounded shape. Testing of our 2 D program shows the surface area in a bounded shape. Testing of our 2D program shows
that it efficiently calculated the bounded area within 10% of the actual area in seven of eight (87.5%) trials. We have also developed a system that calculates the surface area of a
3D shape. This method uses infrared cameras of known focal lengths, and uses two pictures to calculate 3D coordinates of several points. By annecting these points with small triangles, the program can
cont efficiently calculate the surface area of most shapes within approximately 10% accuracy

Introduction

Sensory abnormalities in humans include hypersensitivity, burn victims, and nerve damaged areas. Patients with sensory abnormalitie are generally treated, but doctors need a reliable way to measure whether the treatment is helping the condition. One method of measurement is the surface area of the sensory abnormality. reduction in area of the sensory abnormality can be a simple indication that the treatment plan is working effectively. Dr. Backonja current
outlines the shape of the sensory abnormality on graph paper and counts the squares to calculate surface area. Our client has asked us to
develop a better surface area calculation method.

Design Criteria

[^0]
Final Design

Figure 2: 2D Surface Area Calculation
The final 2D design focuses on streamlining the current process. The client takes a picture of the previously traced area, runs it through the 2D Java program, and it outputs the area inside the bounds of the shape. This program dramatically reduces the amount of time necessary to calculate the area of the sensory abnormality, and it is cost efficient, as it is written in Java.

Figure 3: 2D Program Interface The user interface for the 2D program is very simple. It contains a box where the user inputs the name of the JPEG file, a calculate button, and a box that outputs the final area calculation.

Figure 4: Stereo Imagin If the imager size, focal length and distance hetween the cameras used are known, images taken by two coplanar cameras may be used taken by the three dimensional coordinates of any point in both image

Figure 5: 3D Surface Area Calculation
The final 3D design uses stereo imang techniques to calculate the 3D surface area of the abnormality from two images of the abnormality. The clinician must dot along the perimeter of the abnormality and then place dots within the perimeter. Then a larger perimeter consisting of retro focuses on the region within the reflective tape (which appears white to the infrared cameras). It calculates the 3 dimensional coordinates of each dot within the region and then connects the dots in 3D space to determine the total area of the abnormality.

Testing

To test our final design, we used our program with several shapes of known area. We compared the area calculated with our program to the actual area to check its accuracy.

Chart2:3D 5 Sytem Testing

䢂 shapes were within 10% of the actual area in seven of eight (87.5%) images. The testing of the 3D program showed similar results. It was within 10% in two of three (66.7%) trials. Although neither of the programs were able to calculate the actual area every time, each was within 15% of the actual area.

Ergonomics

Patient Ergonomics:
-No marking of patient for 2D area
-No motion restrictions
User Ergonomics:
User Interface for easy use
Algorithm development to minimize user input
-Integrated user interface for 2D program

Future Work
 2D Program:
 Algorithm development -Complex shapes
 3D Program:
 ncreased reliability mprove reflective bounding method
 Acknowledgements

Dr. Misha Backonja

Prof. Amit Nimunkar
References
Riversideonline.con
Neoneocoon.com

[^0]: Noninvasive
 -User friendly
 -Affordable
 -More efficient than current process
 -Accurate
 -Reliable

