Sensory Abnormality Mapping

Client: Dr. Backonja Advisor: Professor Amit Nimunkar

Team Leader: Justin Gearing Communicator: Daniel Miller BWIG: Mason Jellings BSAC: Jamon Opgenorth

Background

- Client: Dr. Backonja
 - Dept. Neurology (UW-Hospital)
- Researches human
 sensory abnormalities
 - Loss of sensation
 - Pain
- Typical locations include: face, hands, and trunk

Riversideonline.com, Neoneocon.com

Motivation

- Studies the response to medicine treatments.
- Requires quantifiable data.
 - Surface area of affected region
- Current system: trace
 affected area on graph
 paper.

Design Specifications

- □ User friendly
- Require less time than current method
- Limited contact with patient
- Accurate
 - Within 10% of actual area
- Precise
 - Within 10% repeatability
- Compatible with all patients and sample types

Preliminary Work

- 2D Area Calculation Program
 - MATLAB
 - Reflective Boarder
 - Calibration Sticker
- OptiTrack Cameras
 - For use with Design 2
 - Java and C++
 - No included software
 - Uses COM

OptiTrack.com

Design 1: Previous Design

- Uses 3 OptiTrack FLEX:V100 Cameras
 - IR Cameras
- Uses OptiTrack PointCloud Software
 - Used to track the 3D coordinates of objects viewed by the 3 cameras
- Uses IR LED as Tracked Object
 - Used to "Trace" 3D area on skin
- Uses MATLAB to Connect the Coordinates and Calculate Area
 - Triangles and ¹/₂ cross product algorithm

Design 1: Previous Design

Limitations

All three cameras must "see" the LED at all times

- Awkward
- No opposite side support
- Calibration repetition
- Lack of precision
 - Patient movement
 - Clinician inconsistency
- Algorithm issues
- PointCloud + MATLAB
 - Consolitation and GUI required

Design 2: Stereo Imaging

Uses 2 OptiTrack FLEX:V100 Cameras

- Greyscale imaging functionality
- Uses 2 Still Images Taken by Cameras Separated by a Known Distance
 - Calculates depth at any point
 - Principle behind binocular vision
- Uses Triangulation and Area Calculation Algorithm
- Uses Java and C++ for Camera Communication and GUI

Design 2: Stereo Imaging

Design 3: 2D Projection Method

- Similar to Mercator projection
- Requires multiple pictures

 Splices pictures and reforms a master image
 Calculates area of 2D image

Design Matrix

Design	Feasibility (15)	Accuracy (20)	Ease of Use (30)	Ergonomics (25)	Cost (10)	Total (100)
Old Design	13	10	10	20	3	56
3D Coordinates	5	15	15	20	5	60
2D Projection	5	15	25	15	10	70

Final Design

□ 2-D Design

Measures Enclosed Area of Graph
 Paper Sampling

□ 3-D Design

 Produces "Mercator projection" of Sampling Area

Intermediate Deliverable

Cost Efficient

Builds Familiarity/Trust of Program

Future Work

Finalize/test 2-D program in Java

Deliver 2-D program to client

Program 3-D "Mercator" program

□ Test program

Deliver final program to client

Acknowledgements

Client: Dr. Backonja

Advisor: Professor Amit Numinkar

References

- http://math.rice.edu/~lanius/images/mercator.gif
- OptiTrack.com
- □ Riversideonline.com,
- □ Neoneocon.com

QUESTIONS?