Sensory Abnormality Mapping

Client: Dr. Backonja
Advisor: Professor Amit Nimunkar
Team Leader: Justin Gearing
Communicator: Daniel Miller
BWIG: Mason Jellings
BSAC: Jamon Opgenorth

Background

\square Client: Dr. Backonja

- Dept. Neurology (UW-Hospital)
\square Researches human sensory abnormalities
- Loss of sensation
\square Pain
\square Typical locations include: face, hands, and trunk

Riversideonline.com, Neoneocon.com

Motivation

\square Studies the response to medicine treatments.
\square Requires quantifiable data.
\square Surface area of affected region
\square Current system: trace affected area on graph paper.

Design Specifications

\square User friendly
\square Require less time than current method
\square Limited contact with patient
\square Accurate

- Within 10\% of actual area
\square Precise
- Within 10\% repeatability
\square Compatible with all patients and sample types

Preliminary Work

\square 2D Area Calculation Program

- MATLAB
\square Reflective Boarder
- Calibration Sticker
\square OptiTrack Cameras
\square For use with Design 2
- Java and C++
\square No included software
■ Uses COM

OptiTrack.com

Design 1: Previous Design

\square Uses 3 OptiTrack FLEX:V100 Cameras

- IR Cameras
\square Uses OptiTrack PointCloud Software
- Used to track the 3D coordinates of objects viewed by the 3 cameras
\square Uses IR LED as Tracked Object
- Used to "Trace" 3D area on skin
\square Uses MATLAB to Connect the Coordinates and Calculate Area
- Triangles and $1 / 2$ cross product algorithm

Design 1: Previous Design

\square Limitations

- All three cameras must "see" the LED at all times
- Awkward

■ No opposite side support

- Calibration repetition
- Lack of precision
- Patient movement
- Clinician inconsistency
- Algorithm issues
\square PointCloud + MATLAB

- Consolitation and GUI required

Design 2: Stereo Imaging

\square Uses 2 OptiTrack FLEX:V100 Cameras
\square Greyscale imaging functionality

- Uses 2 Still Images Taken by Cameras Separated by a Known Distance
\square Calculates depth at any point
- Principle behind binocular vision
\square Uses Triangulation and Area Calculation Algorithm
\square Uses Java and C++ for Camera Communication and GUI

Design 2: Stereo Imaging

Design 3: 2D Projection Method

\square Similar to Mercator projection
\square Requires multiple pictures

\square Splices pictures and reforms a master image
\square Calculates area of 2D image

Design Matrix

Design	Feasibility (15)	Accuracy (20)	Ease of Use (30)	Ergonomics (25)	Cost (10)	Total (100)
Old Design	13	10	10	20	3	56
3D Coordinates	5	15	15	20	5	60
2D Projection	5	15	25	15	10	70

Final Design

- 2-D Design
- Measures Enclosed Area of Graph Paper Sampling
- Intermediate Deliverable
- Builds Familiarity/Trust of Program

- 3-D Design

- Produces "Mercator projection" of Sampling Area
- Cost Efficient
- Simple 3-Step Process

Future Work

- Finalize/test 2-D program in Java
\square Deliver 2-D program to client
- Program 3-D "Mercator" program
\square Test program
\square Deliver final program to client

Acknowledgements

\square Client: Dr. Backonja
\square Advisor: Professor Amit Numinkar

References

\square http://math.rice.edu/~lanius/images/mercator.gif

- OptiTrack.com
\square Riversideonline.com,
\square Neoneocon.com

QUESTIONS?

