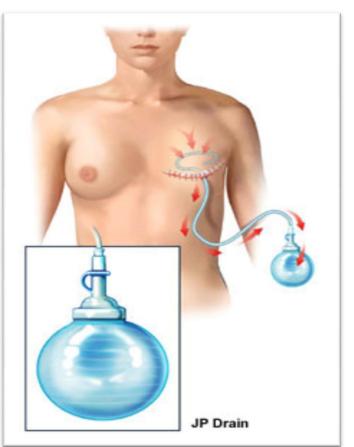
Drain Tube

Team Members:

Kelsey Hoegh (BSAC), Laura Platner (BWIG), Tanner Marshall (Co-Leader), Taylor Powers (Co-Leader), Danny Tighe (Communicator)

Client:

Samuel Poore, Dental and Plastic Surgery, UW School of Medicine and Public Health


Advisor:

Professor John Webster, Department of Biomedical Engineering, UW Madison

Background

- 200,000 patients are diagnosed with breast cancer every year^[1]
- Many have to undergo a mastectomy
- After a mastectomy the patients have to wear a surgical drain tube

Figure 1: Diagram of a surgical drain tube. <http://www.cancer.sutterhealth.org/informati on/bc_notebook/postoperative_care.html>

Background

- Surgical drain tubes are used to drain fluid from the wound
- Drain tubes are worn for 14 days following a mastectomy
- Patients clean and record how much fluid was drained

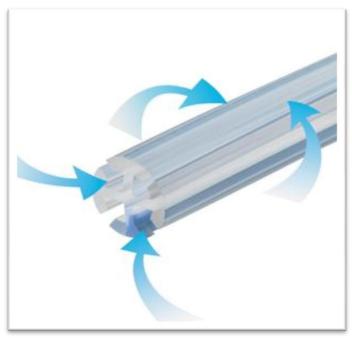


Figure 2: Close up view of a fluted drain tube. http://www.ctsnet.org/peterssurgical

Background

- 20% of Dr. Poore's patients develop an infection
- 5% have to get the drain removed and undergo another surgery
- Extra operations= longer recovery, more complications, more medical bills

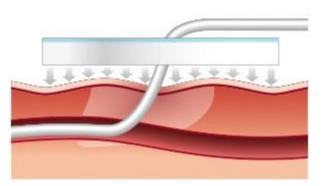


Figure 3: Skin Bacteria <http://www..brighamandwomens.org>

Competition

Biopatch

- Releases CHG up to 7 days ^[2]
- Successfully fights infection
- Issues:
 - Hinders surgeon's procedure
 - Provides additional work for the surgeon
 - Does not function for the optimal amount of time

Figure 4: Diagram of a biopatch. http://www.ethicon360.com/products/biopatchprotective-disk-chg

Competition

- Microcidal Catheters
 - Micropores in the catheter release microcidal agent^[3]
- Issues:
 - Cannot function as an ideal drain tube
 - Has agent in regions unassociated with the wound cite
 - Potential to slide in and out

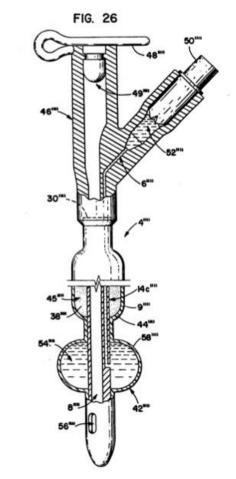


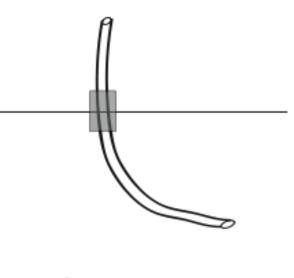
Figure 5: U.S. Patent #5,269,770

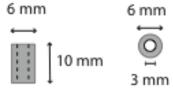
Client Specifications

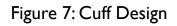
- Small and flexible
 - Fit through a 5 mm incision
- Operate in vivo for up to 2 weeks
- Microcidal agent should be a part of tube
- Reduce wound dressing needed
- Must be biocompatible
- Economical enough to be mass produced
- Release microcidal agent at wound site

Three Designs

- Cuff Design
- Chlorohexidine-Impregnated Tube
- Suture Tab Design




Figure 6: Drain Tube http://images1.hellotrade.com/data2/AI/FH/HELLOTD-1867255/15_1_roundsiliconedrainsjackson-250x250.gif



Cuff Design

- Silicone tube
- Cuff around tube at surface of skin
- Made out of polymer foam
- Chlorohexidine is microcidal agent

Chlorohexidine-Impregnated Tube

- Silicone tube impregnated with chlorohexidine
- No chlorohexidine after set point

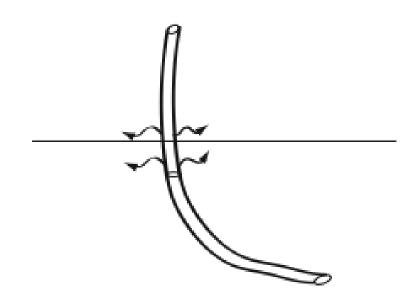
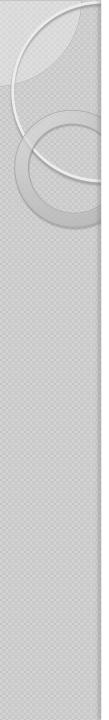



Figure 8: Tube design

Suture Tab Design

- Disk attached to tube
- Acts as tab to suture better to skin
- Tab must be able to fit through incision
- Tab is a type of foam
- Chlorohexidine

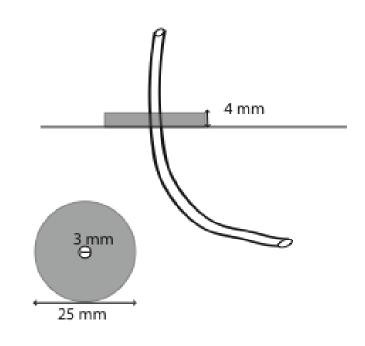


Figure 10: Suture tab design

Design Matrix- Shapes

	Weight	Tube	Cuff	Disc
Feasibility	0.50	I	3	4
Cost	0.10	2	2	2
Durability	0.70	4	3	2
Safety	1.00	I.	3	4
Ergonomics	0.85	I.	2	4
Surface Area	0.40	I.	2	4
Flexibility	0.90	4	3	2
Total		9.35	12	14.4

Design Matrix- Materials

	Weight	Silicone	Polyurethane
Feasibility	0.50	2	2
Cost	0.10	2	3
Durability	0.70	4	3
Safety	1.00	4	4
Absorbency	0.85	2	4
Flexibility	0.70	2	3
Manufacturability	0.50	3	3
Bonding	0.90	4	3
Total		15.7	17.1

Final Design

- Combines cuff and disc designs
- Has most surface area
- Will not slip back into incision

not to	scale	
6		
100		
		T
	→ 3 m	∎ m k−
	251	30

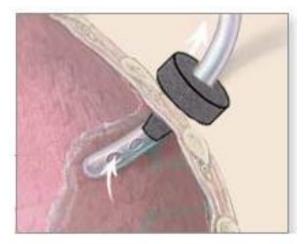


Figure 11 &12: Final design

Final Design Continued

- Obstacles
 - Fitting foam piece through incision
 - Compact or fold
 - Releasing mechanism
 - Matrix or reservoir
 - Foam type
 - Testing

Matrix Configuration

Reservoir Configuration

Figure 13: Drug delivery configuration. http://www.mdtmag.com/uploadedImages/MDT/Art icles/2010/06/NuSil1%20Preview.jpg

Future Work

- Determination of Material (Silicone vs. Polyurethane)
 - Adherence to Silicon Tube
 - Flexibility
 - Absorbency of microcidal agent

Future Work Continued

Testing

- Multiple simple prototypes
- Simulated environment
- Animal Testing
- Effective duration of use
- Final design
- Product Development

Acknowledgements

- Professor John Webster Advisor
- Samuel Poore Client
- Greg Gion Polymers Specialist

Questions?

References

- [1] American Cancer Society. (2009). Facts and Figures 2010. Retrieved January 2011, from http://www.cancer.org/Research/CancerFactsFigur es/BreastCancerFactsFigures/breast-cancer-facts--figures-2009-2010
- [2] Biopatch: Protective disk with CHG. *Ethicon* 360. [online] Referenced Feb. 27, 2011. http://www.ethicon360.com/products/biopatchprotective-disk-chg.
- [3] Conway, L. J., Conway, P. J., Fryar, D. 1992. Microcidal Agent Releasing Catheter. US Patent 5,269,770.