MRI CARDIAC EXERCISE DEVICE

Nick Thate, Leader Andrew Hanske, BSAC

Team members:

Evan Flink, Communicator Tongkeun Lee, BWIG

Client: Prof. Naomi Chesler

Advisor: Prof. John Webster.

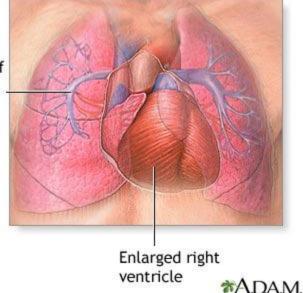
Outline

- Problem Statement
- Background Information
- Competition and Past BME Designs
- Preliminary Testing Results
- Design Options
 - Leg Extension
 - Leg Press
 - Stepper
- Design Matrix
- Final Design
- Future Work
- Acknowledgements / References

Problem Statement

- Design an exercise device to be used in cardiac MRI scans in order to diagnose and assess pulmonary hypertension
- Client requirements
 - MRI compatible materials
 - Exercise within the bore
 - Comfortable supine exercise motion
 - Sufficient resistance to increase cardiac output
 - Adjustable workloads
 - Reasonable size and weight
 - Minimal upper-body movement

Background Information


Pulmonary Hypertension

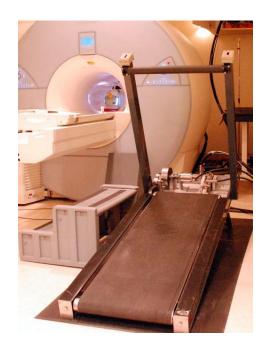
- Abnormally high blood pressure in pulmonary arteries
- Decreased artery diameter
- Enlarged right ventricle
- Chronic decreased blood [O₂]

Symptoms

- Chest pain or pressure
- Fast heart rate, shortness of breath
- Fatigue/weakness, light-headedness
- Swelling of lower extremities
- Traditionally assessed with invasive procedure

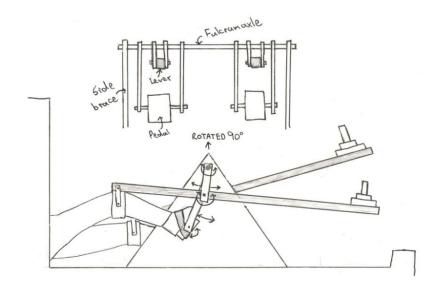
Narrowing of pulmonary artery

http://health.allrefer.com/health/primarypulmonary-hypertension-primary-pulmonaryhypertension.html


Competition

- Lode B.V. MRI Ergometer
 - Expensive (> \$28,000)
 - Cycling motion
- MRI-compatible Treadmill
 - Developed at Ohio State University
 - Exercise occurs outside of the MRI tube
 - Less accurate results

http://www.lode.nl/en/product s/mri ergometer


http://www.medcitynews.com/2009/05/commercialization-ramps-up-on-ohio-state-university-treadmill-used-for-mri-heart-tests/

Past BME Designs

- MRI Lower Leg Exerciser
 MRI Leg Exercise Device
 - Spring 2010
 - Excess friction
 - Insufficient workload

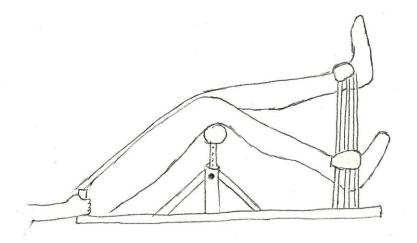
- - Fall 2010
 - Unnatural loading
 - Bulky

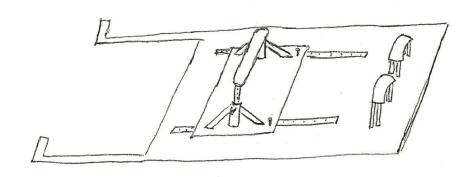
Preliminary Testing

- Constructed mock MRI bore
 - Tested exercise options
 - Excluded biking
- Desired Heart Rate: >70-80% of Max HR
- Exercise data:

	Leg Extension	Leg Press	Stepper	Calf Machine
Time (min:sec)	3:30	3:00	3:00	1:20
Work Load	90 lb (41 kg)	170 lb (77 kg)	68 rpm	160 lb (73 kg)
Heart Rate (bpm)	158	134	164	123

Leg Extension Motion

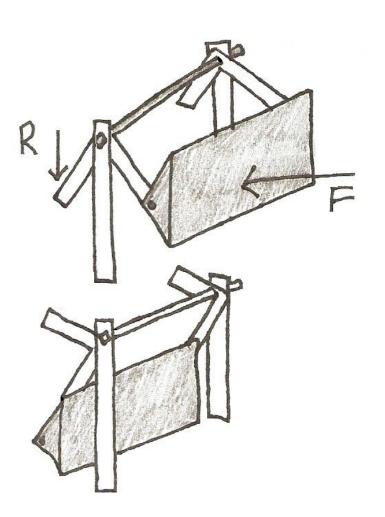

Leg Extension Design


Pros

- Natural motion
- Light-weight & relatively small
- Effective at raising heart rate

Cons

- Some muscle fatigue
- Durability concerns

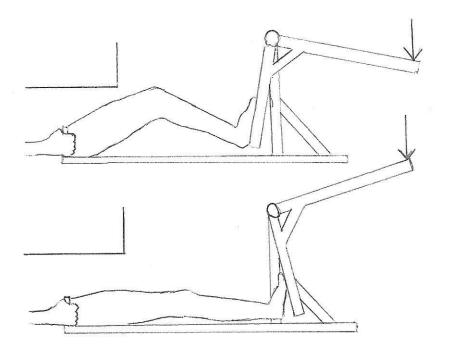


Leg Press Motion

Leg Press Design

Pros

- Effective at raising heart rate
- Most durable design


Cons

- Largest design
- Unnatural aerobic motion
- Some muscle fatigue
- Most upper-body movement

Stepper Motion

Stepper Design

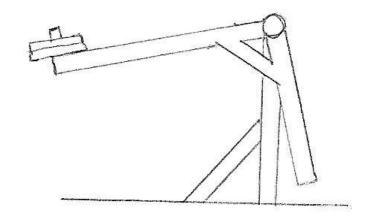
Pros

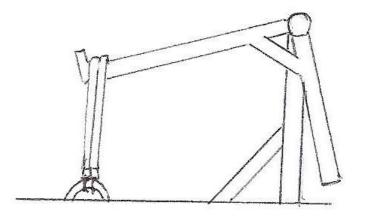
- Natural, comfortable motion
- Most effective at raising heart rate
- Reduced friction

Cons

- More moving parts
- May not disassemble easily

Design Matrix


Weight	Criteria	Leg Extension	Leg Press	Stepper
0.2	Patient Comfort	6	7	9
0.2	Motion Mechanics	9	7	8
0.2	Effectiveness	8	7	9
0.15	Durability	6	8	7
0.1	Ease of Assembly	8	7	6
0.1	Size/Weight	9	6	8
0.05	Cost	9	7	7
	Weighted Average	7.65	7.05	8


Final Design

- Primary materials:
 - HDPE, Delrin
 - Brass fasteners
 - Glass bearings

- Light-weight, resistance can vary, subject to fatigue
- Weight resistance:
 - Heavy/bulky, consistent, durable

Future Work

- Order materials and components
- Construct and assemble prototype components
- Test effectiveness of prototype
- Test compatibility of prototype with MRI
- Successfully acquire pulmonary blood pressure data through MRI scans before, during, and after exercise

<u>Acknowledgements</u>

- Prof. Naomi Chesler
- Prof. John Webster
- Prof. Darryl Thelen
- Alejandro Roldan
- Previous BME Design Teams

References

- Blaivas, A.J. (2010, April 27). Pulmonary hypertension. Retrieved from http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001171/
- Lode B.V. (2008). MRI Ergometer. Retrieved from http://www.lode.nl/en/products/mri_ergometer
- McGuire, J., et. al. (2010, December 10). MRI exercise device. Retrieved from http://bmedesign.engr.wisc.edu/websites/project.php?id=332
- Murray, A. (2009, May 14). Ohio state team creates new company based on university invention. Retrieved from http://www.osu.edu/news/newsitem2425
- Yagow, D., et. al. (2010, May 6). An MRI-compatible lower-leg exercising device for assessing pulmonary arterial pressure. Retrieved from http://bmedesign.engr.wisc.edu/websites/project.php?id=29