

Abstract

Dysphagia, the inability to swallow correctly, is a problem that can lead to a number of negative health conditions such as pneumonia, dehydration and malnutrition. The client, Dr. JoAnne Robbins, researches the causes of and treatments for dysphagia. Dr. Robbins requires a tongue model that can accurately and precisely be used to test liquids and foods, and is compatible with the equipment needed for pressure measurement devices. The design is a silicone tongue that features a 3-banded, T-pin design which utilizes computer-controlled servo motors for actuation.

Problem Definition Motivation

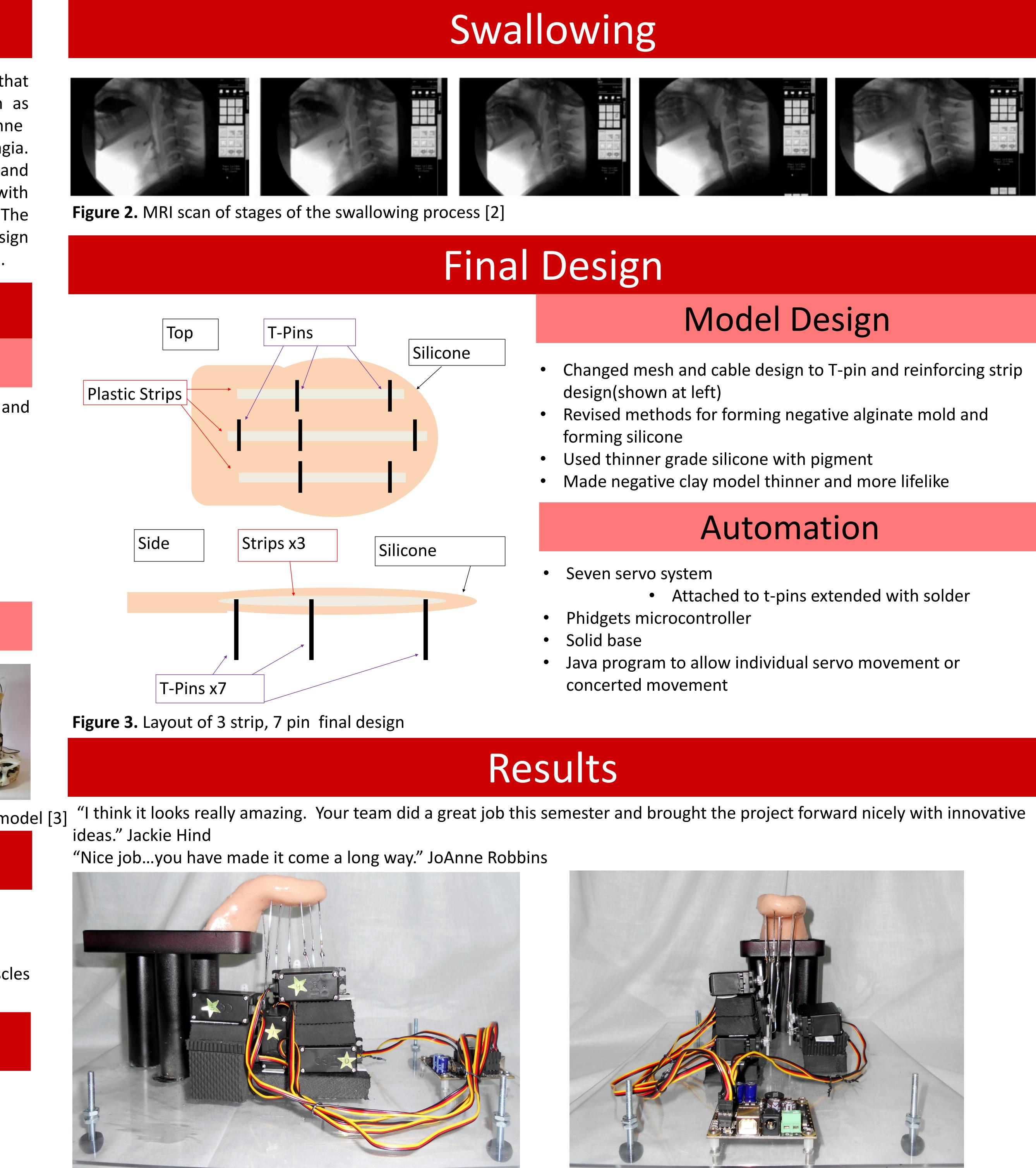
- Dysphagia (difficulty swallowing) affects a large number and variety of people [1]
 - Aging
 - Neurological disorders
 - Muscle disorders
- Can lead to complications
 - Pneumonia, Malnutrition and dehydration
- No current devices to study dysphagia or swallowing
- Current focus: tongue

Background

- Swallowing requires complex muscle movement
 - Intrinsic muscles, extrinsic
 - muscles
- Swallow occurs in two phases
- Horizontal phase, vertical phase
- Current devices: AnTon model, robots in Japan Not swallowing motion

Figure 1. AnTon model [3]

Problem Statement


- Goal to develop actuating tongue model
- Must go through full range of swallowing motion
- Must apply accurate pressure to bolus/oral cavity
- The tongue must be able to simulate degeneration of muscles common in dysphagia

Design Criteria

- Sturdy design for daily use
- Waterproof and easy to clean
- Able to swallow hot/cold samples
- Stain-protected material
- Proper pressure distribution and mechanics
- Must mimic human swallowing motion and timing (0.5 sec)

DEVELOPING A 3D MODEL OF THE TONGUE AND MOUTH TO ASSESS PRESSURE GENERATION WHEN SWALLOWING

<u>TEAM</u>: Naomi Humpal, Taylor Milne, Nick Schapals, Armand Grabowski CLIENT: Professor JoAnne Robbins, Ph.D. – UW School of Medicine and Public Health <u>ADVISOR</u>: Thomas Yen, Department of Biomedical Engineering – University of Wisconsin – Madison

Figure 4. Final design side (left) and front (right) views

Parts List and Cost

<u>Item</u>

<u>Cost</u>		
1 Quart Ecoflex 00-10 Silicone		\$ 30.10
3 lb. Alginate Molding Material		\$ 21.83
T-pins and plastic		\$ 0.00
Sculpey modeling clay		\$ 11.00
8 Hitec HS-422 Servos		\$ 79.92
Phidgets AdvancedServo 8-motor		\$ 87.70
	Total	\$ 230.55

Future Work

- Design oral cavity and throat model
 - Simulate realistic properties of tissues
 - Mechanical throat muscle contraction
- Create additional actuation point/angle to further tongue movement towards back of throat
- Provide tongue movement for disease models
- Code for swallow with varied paralysis Develop a more user friendly program interface
 - Integrate on-screen buttons for commands
- Further testing
 - Quantify pressure exerted by tongue
 - Verify function with varied bolus substances

References

- "Dysphagia." Mayo Clinic. Mayo Clinic, 2011. Web. 3 May 2012. <u>http://www.mayoclinic.org/dysphagia/</u>.
- 2. JoAnne Robbins, Ph.D.
- Hofe, Robin and Moore, Roger K., "Towards an investigation of speech energetics using 'AnTon': an animatronic model of a human tongue and vocal tract, Connection Science, 20 (4): 319-336, December 2008.
- Takemoto, Hirononri. "Morphological Analyses of the Human Tongue Musculature for Three-Dimensional Modeling." Journal of Speech, Language, and Hearing Research. ProQuest Research Library. Web. 3 May 2012.

Acknowledgements

Professor Thomas Yen JoAnne Robbins, Ph.D. Jackie Hind, MS