MRI CARDIAC EXERCISE DEVICE

Team members: Evan Flink, Leader Andrew Hanske, Communicator Tongkeun Lee, BSAC Nick Thate, BWIG

Client: Prof. Naomi Chesler, Department of Biomedical Engineering Advisor: Prof. Willis Tompkins, Department of Biomedical Engineering

<u>Outline</u>

- Problem Statement
- Background Information
- Competition / Past BME Designs
- Previous Prototype
 - Design, Exercise Testing, and MRI Testing
- Previous Prototype Problems
- Semester Progress
 - Prototype Modifications
 - New Weights
 - Electronic Measurement System
- Future Work
- Acknowledgements / References

Problem Statement

- Design an exercise device to be used in cardiac MRI scans in order to diagnose and assess pulmonary hypertension
- Client requirements
 - MRI compatible materials
 - Exercise within the bore
 - Comfortable supine exercise motion
 - Minimal upper-body movement
 - Sufficient resistance to increase cardiac output
 - Adjustable workloads
 - Reasonable size and weight
 - Measurement of power and cadence

Background Information

- Pulmonary hypertension
 - Abnormally high blood pressure in pulmonary arteries
 - Decreased artery diameter
 - Enlarged right ventricle
 - Decreased systemic blood [O₂]
- Traditionally assessed with invasive procedure

http://health.allrefer.com/health/primarypulmonary-hypertension-primary-pulmonaryhypertension.html

Competition

- Lode B.V. MRI Ergometer
- MRI-compatible treadmill
- Past BME design projects
 - Spring 2010
 - Fall 2010

http://www.lode.nl/en/pr oducts/mri_ergometer

http://www.medcitynews.com/2009/0 5/commercialization-ramps-up-onohio-state-university-treadmill-usedfor-mri-heart-tests/

Previous Prototype: Design

- Utilizes stepping motion
- User pushes on foot pedals which raise weights at the ends of the lever arms
- Materials:
 - High density polyethylene (HDPE)
 - Glass and acetal bearings
 - Brass screws
 - Aluminum rods
 - Nylon hand and shoulder straps

Previous Prototype: Testing

- Performed outside bore to find maximum attainable HR
- Exercised w/ maximum weight according to fitness levels
- Cadence of ~110 steps/min for 10 min
- Heart rate measured with digital pressure monitor and manually on carotid artery

Subject	Resting HR (bpm)	Post Exercise HR (bpm)	% Max. HR
1	73	119	59.80
2	74	143	71.86
3	70	122	61.31
4	68	110	55.28
Average	71.25	123.50	62.06

Previous Prototype: MRI Testing

- Obtained cardiac MR images from one subject
- Real-time imaging during exercise
 - Continuously scans
- Allows for assessment of:
 - Right ventricle function
 - Pulmonary artery area
 - Systolic vs. diastolic
 - Arterial distensibility (stiffness)

Real-time MRI four-chamber view of the subject's heart

MRI Testing Images

Real-time MRI images of the heart during systole (A) and diastole (B) while exercising; red circles indicate the pulmonary artery

Problems with Previous Prototype

- Base of device lifting during exercise
- Diagonal support bending
- Incompatibility of weights with MRI
- Weight interface
- Lack of electronic power and cadence measurement system

Prototype Modifications

- Reinforced diagonal supports
 - 1" thickness vs. ¹/₂" thickness
 - Increase compressive strength
- Raised straps
 - Strap forces become more horizontal
 - Reduce lifting of patient-end of the device

New Weights

- DuPont[™] Zodiaq[®] Tiles
 - Completely MRI-compatible
 - Density of 2.4 2.5 g/cm³
 - Free sample tiles
 - (4" x 4" x ³⁄₄")
 - 1.04 1.08 lb/tile
- Up to 16 tiles/lever arm

http://www.hllmark.com/downloads/newcolors2011.jpg

HDPE weight interface:

Electronic Measurement System

- Infrared proximity sensor
 - Range: 20-150cm (~8" 4'11")
- Records dynamic position of one lever arm during exercise
- Cadence and power continuously calculated by an Arduino Microcontroller
- Data relayed to control room via USB
- Verbal feedback to user

Future Work

- Complete weight interface
- Employ the electronic measurement system
 - Order components
 - Develop code
 - Test
 - Install onto device
- Test prototype on patients with varying heights to determine patient size limitations

Acknowledgements

- Prof. Naomi Chesler
- Prof. Willis Tompkins
- Ken Kriesel
- Dr. Alejandro Roldan
- Dr. Oliver Wieben
- Dr. Chris François
- Jarred Kaiser
- Previous BME Design Teams

References

- Blaivas, A.J. (2010, April 27). Pulmonary hypertension. Retrieved from http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001171/
- Lode B.V. (2008). *MRI Ergometer*. Retrieved from http://www.lode.nl/en/products/mri_ergometer
- McGuire, J., et. al. (2010, December 10). *MRI exercise device*. Retrieved from http://bmedesign.engr.wisc.edu/websites/project.php?id=332
- Murray, A. (2009, May 14). Ohio state team creates new company based on university invention. Retrieved from http://www.osu.edu/news/newsitem2425
- Yagow, D., et. al. (2010, May 6). An MRI-compatible lower-leg exercising device for assessing pulmonary arterial pressure. Retrieved from http://bmedesign.engr.wisc.edu/websites/project.php?id=29

