A NEW DESIGN FOR A LAPAROSCOPIC KIDNEY CLAMP

Team Members

Shannon Hynes, Jeff Hlinka, Kayla Stankevitz

Client

Dr. E Jason Abel Department of Urology

UW – Madison

Advisor

Professor Mitch Tyler Department of Biomedical Engineering UW - Madison

Overview

- Background
- Requirements
- Previous Design
- Modifications
- Fabrication Methods
- Force Calculations
- □ Testing
- Expected Results

Laparoscopic Partial Nephrectomy

- LPN involves removal of only diseased tissue from kidney.
- Small incisions
- Kidneys filter ~ 20% of blood/ minute
- Clamping needed to control blood 10 mm loss and keep operating view clear.

http://www.europeanurology.com/article/S1569-9056 (07)00092-9/fulltext

Current Methods

- Blood flow occluded during Partial Nephrectomy (PN)
 - Currently clamped at renal artery and vein
 - Create global ischemia to kidney
 - Potential long term damage

http://www.kidneycancerinstitute.com/PDFs/ Aesculap-Nader-partialnephrectomy %20manuscript.pdf

Proposed Methods

- Create a surgical clamp that will clamp across the kidney
 - Selectively occludes blood flow to the portion of the kidney being removed
 - Does not disrupt blood flow to healthy tissue

http://www.kidneycancerinstitute.com/PDFs/ Aesculap-Nader-partialnephrectomy %20manuscript.pdf

Requirements

Laparoscopic instrument

- Must be able to fit through a 12 mm trocar
- Provide enough strength to occlude renal blood flow
 - □ 5 N
 - Without causing harm to kidney
 - Force applied evenly
- Reusable, sterilizable
- □ Able to operate with one hand
- Flexible shaft

Clamp Components

Previous Design

Issues:

Fabrication
Even force application

Design Modifications: Clamp

- Two-stage design
- Locks into place
- Applies force evenly
- Easily fits into trocar

Clamp Mechanism

- Plunger with spring
 - When closed, spring retracted, plunger restricted
 - After least 20°, spring released, plunger deployed
 - Two pieces become one part

Design Modifications: Shaft

Modeled off current flexible shafts

Provides more flexibility

Plastic sheath inside shaft protects wires

http://www.carefusion.com/pdf/Surgical_Instrumentation/ VM1823_Cosgrove_Flexclamp_lit_sheet%20final%20090210.pdf

Design Modifications: Handle

- Model off current laparoscopic handles
- Three main components
 - Slide to retract/deploy plunger
 - Trigger to open clamp to at least 40° to fit around kidney
 - Handle to apply gradual force to kidney
 - Includes ratchet to maintain previously applied force

http://en.wikipedia.org/wiki/ File:Laparoscopic_Hand_Instrume nts_001_JPN.jpg

Fabrication Methods

- Material : Delrin
 - Acetal homopolymer
 - Can withstand 11,000 psi and temperatures of 180 degrees F
 - 12" x 12 " x 0.5" sheet costs \$43
- Manufactured via another company
- □ Cable : Steel wire rope
 - Flexible, breaks at 110 lbs
 - **5** \$9 for 50 ft

Force Calculations

- Maximum force of female hand ~200 male hand ~300 N
- Force necessary to compress kidney a substantial amount = 5N
- Force needed at handle to provide 5 N of clamping force ~ 100N

Safety Calculations

- □ 20 N of force will rupture kidney
- $\square \sim 400 \text{ N}$ of force at handle

Testing

Can find force and stress in clamp with FBD and stress analysis in SolidWorks

Questions to Answer

- How much force does it actually apply?
- □ Will the clamp occlude blood?
- What is the actual force needed to occlude blood?

Expected Results

Compressive tests of kidney using MTS
 Is 5N enough to compress entire kidney?
 Pig lab to assess occlusion force as well as ergonomics of clamp

Next Steps

- Send clamp design out to be fabricated
- Design and fabricate handle with ratchet
 - Must have a trigger to open the clamp, close the clamp, and release the plunger
- Order steel cable
- Assemble clamp components
- Testing

References

- <http://www.europeanurology.com/article/S1569-9056(07)00092-9/ fulltext>
- Landman, Jaime. "Laparoscopic Partial Nephrectomy." Kidney Cancer Institute. Web. http://www.kidneycancerinstitute.com/PDFs/Aesculap-Nader-partialnephrectomy%20manuscript.pdf>.
- Peter L. Steinberg, Ravi Munver, and Reza Ghavamian. Journal of Endourology. September 2011, 25(9): 1525-1530.
- Farshad, Mehdi. "Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauman." Journal of Biomechanics. 1999, 32: 417-425.
- Vahlensieck, W., Petrik, R. "Experiences with a new 'kidney holding and compression forceps." International Urology and Nephrology. 2(3). 253-260.
- Lee, H. Box, G., Abraham, J., Elchico, E., Panah, R. "Laboratory Evaluation of Laparoscopic Vascular Clamps Using a Load-Cell Device – Are All Clamps the Same?" Journal of Urology. 2008, 1267-1272.

Questions?