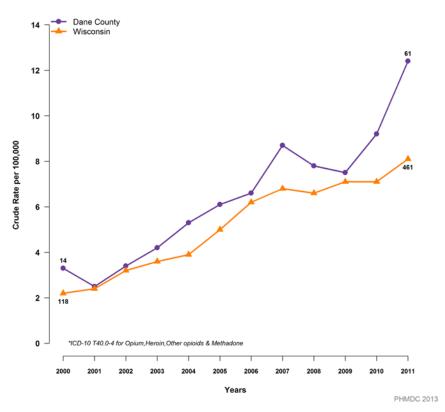
PERSONAL MEDICATION DISPOSAL SYSTEM

Team Leader: Evan Jellings Communicator: Joe Ulbrich BSAC & BPAG: Nick DiFranco BWIG: Alison Walter Advisor: Dr Megan McClean Client: Dr. Philip Bain

AGENDA


- Problem Statement
- Background Material
- Current Methods
- Design Specifications
- Design Ideas

- Design Matrix
- Final Design
- Future Work
- Acknowledgements

PROBLEM STATEMENT

Opiate* Related Deaths 2000-2011 (All Intents)

- Households house expired prescription medications
- Disposal is inconvenient
- Most leave in cabinet or flush down toilet
- Leads to unintentional overdose or addiction
- Goal: Create a disposal system from opiates that is easy and can be used at home

BACKGROUND

Drug Name	Drug Class	Number of Prescriptions	Percent of All Prescriptions
Hydrocodone/Acetaminophen	Opioid	111,831	19.0
Dextroamphetamine/ Amphetamine	Stimulant	55,432	9.4
Oxycodone HCL	Opioid	52,888	9.0
Lorazepam	Sedative	45,132	7.7
Clonazepam	Sedative	40,045	6.8
Zolpidem Tartrate	Tranquilizer	32,441	5.5
Alprazolam	Sedative	29,126	4.9
Methylphenidate HCL	Stimulant	27,696	4.7
Oxycodone HCL/Acetaminophen	Opioid	26,305	4.5
Morphine Sulfate	Opioid	21,600	3.7

Source: Wisconsin Prescription Drug Monitoring Program (PDMP)

CURRENT METHODS

Medsaway

Cactus smartsink

Med drop boxes

Incinerator

Image sampled from Apothecary Products Image sampled from Apothecary Products

Image sample from City of Racine homepage

Image Sampled from Heme Medi Dianafit homepage

DESIGN SPECIFICATIONS

- Render medication inert and inaccessible
- Convenient for at-home, personal use
- Eco-friendly & safe reaction products
- Affordable and safe for use by users

DESIGN IDEAS

Hydrogel Powder

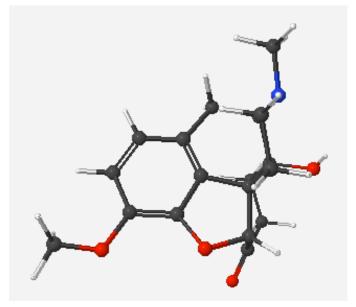
- One or more chemical disposal agents
- Sequester & solidify active agents after exposure to water
- Hydrophilic & hydrophobic components
 - Ex: Sodium alginate + CaSO₄
- Antagonistic additions possible

DESIGN IDEAS

UV Light

- Potential to degrade drugs by excitation of certain bond
- Exposure to light may cause loss of potency [1]
- Hydrocodone does not absorb wavelengths >290 nm [2]
- 1998 FDA must do mandatory photo-stability test on pharmaceuticals [3]

Image from allure.com


DESIGN IDEAS

Ultrasonic Wave Generator

Dolfi Ultrasonic Wave Generator

Bond Vibration Frequency

Molecule of Oxycodone from WebMO


DESIGN MATRIX

Design Matrix (Weight)	Hydrogel Powder		UV Light		Bond Vibrational Frequency	
Inaccessibility (25)	(4/5)	20	(4/5)	20	(5/5)	25
Safety (25)	(4/5)	20	(5/5)	25	(3/5)	15
Cost (20)	(5/5)	20	(3/5)	12	(2/5)	8
Ease of Use (15)	(5/5)	15	(4/5)	12	(5/5)	15
Marketability (10)	(5/5)	10	(4/5)	8	(4/5)	8
Manufacturability (5)	(5/5)	5	(4/5)	4	(2/5)	2
Total (100)	90		81		73	

FINAL DESIGN

- "Modified Pill Bottle" complete with:
 - Pill Grinder Cap
 - Containment
 Chamber
 - Polymer Packets

FUTURE WORK

- Experimentation & Testing
- Fabrication
 - 3-D Printing
 - Machine Shop
- Modify dimensions for other drugs/forms
- Different materials

REFERENCES

[1] (2004). *Photostability of Drugs and Drug Formulations (Second ed.)*. Available: https://books-google-

com.ezproxy.library.wisc.edu/books?hl=en&lr=&id=AFtAqwtrwucC&oi=fnd&pg=PA1&d q=Photoactivated+drugs+and+drug+formulations&ots=jRkSm-

y7Nf&sig=Asu5BrJjuOUCFhRq4SHJ36Vh4uA#v=onepage&q=Photoactivated%20drug%20formulations&f=false

[2] H. H. Tønnesen. (2008), Photoreactivity of drugs. Solar Radiation and Human Health, 102-112. Available:

http://www.dnva.no/geomed/solarpdf/Nr_8_Hjorth_Tonnesen.pdf

[3] PubChem. (2/19/2015). *Dihydrocodeinone*. Available: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=10224

