RaDistance Safety Meter

Leader: David Mott Communicator: Justin Faanes BSAC: Elliott Janssen Saldivar BWIG & BPAG: Jesse Wang Client: Dr. John G. Webster, Department of Biomedical Engineering Client: Dr. Sarah Hagi, King Abdulaziz University Advisor: Dr. Kris Saha, Department of Biomedical Engineering

Overview

- Problem Statement
- Background
- Product Design Specifications
- Design Ideas
- Design Matrix
- Final Design
- Future Work

Gamma probe measuring thyroid gland radioactivity

http://sjccfthynet.blogspot.com/

Problem Statement

 Radioiodine (I-131) is harmful to people in close proximity to the patients

 \circ Radiation exposure should not exceed 5 mSv^1

 Need device to warn patient when they are within 1 m of another human

Thyroid Disorders

- ~200 million thyroid disorders worldwide²
 - 7x more likely to present in women²
- Medical practice
 - Hyperthyroidism
 - Cancer & nodules
 - Goiter (enlargement)
- ▶ I-131 therapy
 - Radioiodine absorbed by thyroid
- Timespan of 4-6 weeks³

www.emedicinehealth.com

Radioiodine (lodine-131)

embryology.med.unsw.edu.au

Half-life of 8.02 days⁴

- Radiation type
 - Beta particles
 - Gamma particles

Secondhand exposure

 Ingestion through breathing, food products, and water consumption

Product Design Specifications

- Detect humans within 1 m radius
 - Accuracy restraint of < 10 cm
- 360° view from patient
 - Competing design's view = 15°
- Alert patient of distance breach
 - Auditory, physical, or visual signal
- Less than 0.5 kg
- Battery life lasting waking hours
 - ~16 h

Competing field of view Proposed thermal sensor field of view Proposed distance sensor field of view

Design 1 (Placement): Head Band

Materials

- Polyester fabric
- Velcro attachment
- Estimated cost
 - \$235

Advantages

- No body obstruction
- Adjustable size

- Uncomfortable after long periods
- Height variations

Design 2 (Placement): Neck Warmer

Materials

- Wool
- Estimated cost
 - \$235

Advantages

- No limb obstruction
- Easy to fabricate

- Uncomfortable after long periods
- Height variations

Design 3 (Placement): Shoulder Pad

Materials

- Polyurethane fabric
- Polyester threads
- Velcro
- Estimated cost
 - \$295

Bulk Size Diffi

Advantages

- Secure placement
- No limb obstruction

- Bulky and heavy
- Size limitations
- Difficult to fabricate

Design 4 (Placement): Belt

Materials

- Webbed nylon (6.5 cm by 1 m)
- Estimated cost
 - \$270

Advantages

- Easy to wear
- Comfortable

- Obstruction caused by arms
- Higher material costs

Design Matrix (Placement)

Criteria (Weight)	Head Band		Neck Warmer		Shoulder Pad		Belt	
Fabrication (20)	4/5	16	2/5	8	1/5	4	5/5	20
Cost (10)	4/5	8	4/5	8	2/5	4	3/5	6
Aesthetics (15)	3/5	9	3/5	9	3/5	9	4/5	12
Safety (10)	3/5	6	3/5	6	4/5	8	4/5	8
Accessibility (20)	3/5	12	4/5	16	4/5	16	5/5	20
Comfort/Ergonomics (25)	3/5	15	2/5	10	5/5	25	5/5	25
Total	66		57		66		91	

Distance Sensors

- MaxBotix MB1000 LV-MaxSonar-EZ0
 - \$28
 - 60° field of view
 - Reports distance of nearest object
 - 6.45 m
 - 2.54 cm resolution

Thermal Sensors

Texas Instrument TMP007

- \$12.50
- 90° field of view

• Records average temperature over area

• 0° to 60° C

Prototype Design

Belt location

Distance sensor

- MaxBotix Ultrasonic Range Finder (EZO)
 - 6 sensors

Thermal sensor

- Texas Instruments Infrared Temperature Sensor (TMP007)
 - 4 sensors

Total cost

• \$270

www.maxbotix.com

www.adafruit.com

Future Work - Fabrication

- Component attachment to belt
- Wiring
 - Snake formation
- Ultrasonic sensor timing
- Field of view testing
- Battery testing
 - 2000 mAh battery theoretically sufficient

www.maxbotix.com

www.maxbotix.com

Acknowledgements

 Client: Dr. John G. Webster, Department of Biomedical Engineering

Client: Dr. Sarah Hagi, King Abdulaziz University

 Advisor: Dr. Kris Saha, Department of Biomedical Engineering

 BME Faculty: Dr. John Puccinelli, Department of Biomedical Engineering

References

1. Barrington, Sally F., et al. "Radiation exposure of the families of outpatients treated with radioiodine (iodine-131) for hyperthyroidism." *European journal of nuclear medicine* 26.7 (1999): 686-692.

2. "Thyroid Disease: Know the Facts." *Awareness, Support, Research*. Thyroid Foundation of Canada, 30 Jan. 2015. Web. 19 Feb. 2015.

3. Ross, Douglas S. "Radioiodine Therapy for Hyperthyroidism." *New England Journal of Medicine* 364.6 (2011): 542–50. Print.

4. "Radioisotope Brief: Iodine-131 (I-131)." *CDC Radiation Emergencies*. Center for Disease Control and Prevention, 16 Oct. 2014. Web. 19 Feb. 2015.

5. Gilbert, Ethel S., et al. "Thyroid Cancer Rates and 131i Doses from Nevada Atmospheric Nuclear Bomb Tests: An Update." *Radiation Research*173.5 (2010): 659–64. Print.